View : 26 Download: 0

Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process

Title
Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process
Authors
Lee, MinjeongYang, MinseokChoi, SangkiShin, JingyeongPark, ChanhyukCho, Si-KyungKim, Young Mo
Ewha Authors
박찬혁
Issue Date
2019
Journal Title
ENERGIES
ISSN
1996-1073JCR Link
Citation
ENERGIES vol. 12, no. 12
Keywords
spent coffee groundsligninfatty acid methyl estersorganosolvresponse surface methodologyanaerobic digestion
Publisher
MDPI
Indexed
SCIE; SCOPUS WOS
Document Type
Article
Abstract
Spent coffee grounds (SCG) are one of the lignocellulosic biomasses that have gained much attention due to their high potential both in valorization and biomethane production. Previous studies have reported single processes that extract either fatty acids/lignin or biogas. In this study, an integrated physicochemical and biological process was investigated, which sequentially recovers lignin, fatty acid methyl esters (FAME) and biogas from the residue of SCG. The determination of optimal conditions for sequential separation was based on central composite design (CCD) and response surface methodology (RSM). Independent variables adopted in this study were reaction temperature (86.1-203.9 degrees C), concentration of sulfuric acid (0.0-6.4%v/v) and methanol to SCG ratio (1.3-4.7 mL/g). Under determined optimal conditions of 161.0 degrees C, 3.6% and 4.7 mL/g, lignin and FAME yields were estimated to be 55.5% and 62.4%, respectively. FAME extracted from SCG consisted of 41.7% C16 and 48.16% C18, which makes the extractives appropriate materials to convert into biodiesel. Results from Fourier transform infrared spectroscopy (FT-IR) further support that lignin and FAME extracted from SCG have structures similar to previously reported extractives from other lignocellulosic biomasses. The solid residue remaining after lignin and FAME extraction was anaerobically digested under mesophilic conditions, resulting in a methane yield of 36.0 mL-CH4/g-VSadded. This study is the first to introduce an integrated resource recovery platform capable of valorization of a municipal solid waste stream.
DOI
10.3390/en12122360
Appears in Collections:
엘텍공과대학 > 환경공학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE