View : 752 Download: 0

Synergistic effects of urban tributary mixing on dissolved organic matter biodegradation in an impounded river system

Title
Synergistic effects of urban tributary mixing on dissolved organic matter biodegradation in an impounded river system
Authors
Begum M.S.Jang I.Lee J.-M.Oh H.B.Jin H.Park J.-H.
Ewha Authors
박지형
SCOPUS Author ID
박지형scopus
Issue Date
2019
Journal Title
Science of the Total Environment
ISSN
0048-9697JCR Link
Citation
Science of the Total Environment vol. 676, pp. 105 - 119
Keywords
BiodegradationDissolved organic matterFluorescence EEMsFT-ICR-MSRiverine CO 2Wastewater
Publisher
Elsevier B.V.
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Dams and wastewater may greatly perturb riverine fluxes of dissolved organic matter (DOM)and CO 2 , yet little is known about the relationships between altered DOM quality and CO 2 emission in eutrophic impounded river systems. A basin-wide field survey of surface water CO 2 and dissolved organic carbon (DOC)was combined with laboratory incubations to examine how dams and urban tributaries delivering treated wastewater influence longitudinal patterns in DOM properties and CO 2 along the impounded Han River traversing Seoul metropolitan area. Fluorescent DOM indices including parallel factor analysis (PARAFAC)components were used to characterize DOM in relation to biodegradable DOC (BDOC). Compared with distinct downstream increases in DOC and CO 2 , BDOC concentration and its proportion in DOC (%BDOC)were highly variable along the mainstem and peaked at urban tributaries. Longitudinal increases in fluorescence index (FI), biological index (BIX), and two PARAFAC components (C2 and C3)contrasted with general decreases in humification index (HIX)and C1, reflecting increasing downstream inputs of anthropogenic DOM. During a 5-day incubation employing continuous CO 2 measurements, the cumulative production of CO 2 in the mainstem water mixed with urban tributary water was significantly higher than the level expected for conservative mixing of the two samples, indicating a synergistic enhancement of DOM biodegradation. Molecular formulas identified by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS)revealed more consumed molecules in the mainstem water and more newly produced molecules in the tributary water over the 5-day incubation, implying abundant labile components in the mainstem water discharged from the upstream dam and highly processed tributary DOM limited in immediately biodegradable organic materials. Downstream increases in CO 2 and DOC along the Han River, combined with the synergistic effect observed in the mixed water, suggest that mixing wastewater-derived DOM with labile autochthonous DOM can enhance CO 2 production in the river system perturbed by impoundment and wastewater. © 2019
DOI
10.1016/j.scitotenv.2019.04.123
Appears in Collections:
공과대학 > 환경공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE