View : 1111 Download: 0

부갑상선 호르몬의 국소 투여와 교정력이 Mongrel Dog의 견치와 소구치의 교정적 치아 이동 기간에 미치는 영향

Title
부갑상선 호르몬의 국소 투여와 교정력이 Mongrel Dog의 견치와 소구치의 교정적 치아 이동 기간에 미치는 영향
Other Titles
A Study on the Effect of Parathyroid Hormone Administration and Orthodontic Force on Movement Period of Mongrel Dogs’ Canine and Premolar Teeth During Orthodontic Treatment
Authors
이보람
Issue Date
2019
Department/Major
임상치의학대학원 임상구강보건학과치위생학전공
Publisher
이화여자대학교 임상치의학대학원
Degree
Master
Advisors
김민지
Abstract
본 연구의 목적은 교정치료 시 부갑상선호르몬(Parathyroid Hormone, PTH)투여와 교정력 변화가 교정 기간 단축에 미치는 영향을 확인하고자 하는 것이다. 평균 35kg인 10개월이상의 Dog Mongrel 4마리를 대상으로 하였고, 실험 전 상악 좌우 견치와 제2소구치의 거리 확보를 위해 제1소구치를 발거 하였으며, 견치(8개)와 제2소구치(8개)에 보철을 제작하여 부착하였다. 거리를 측정하기 위해 견치 교두tip과 제2소구치 교두tip에 작은 홈을 주었고, 이후 견치와 제2소구치사이에 Ni-Ti closed coil spring을 연결하여 동일 악궁의 편측은 150g교정력을 반대측은 300g교정력을 주었다. Dog Mongrel 4마리중에 1,2번개체는 대조군으로 선정하였고, 3번개체는 1주일 마다 1회 저용량 부갑상선호르몬(1vial, 56.5μg)을 국소 주사하였고, 4번개체는 1주일 마다 1회 고용량 부갑상선호르몬(2vial, 113μg)을 국소 주사를 시행하였으며, 근육 주사로 전신마취를 시행한 주는 alginate impression을 채득하여 모델을 제작하였다. 제작한 모델을 스캐너(Identica Blue 3D printer)를 이용하여 스캔한 후 소프트웨어(Exocad)를 이용하여 견치와 제2소구치 거리 변화를 측정하였고, 실험 기간은 총 19주로 그중 14회(1,2,3,4,5,6,8,11,13,14,16,18,19주)의 모델을 제작하여 비교 하였다. 1. 같은 개체간의 동일 악궁의 교정력 차이에 따른 치아의 이동속도를 확인하였을 때, 150g교정력보단 300g교정력을 주었을 때 조금 더 빠른 치아 이동이 있었으나, 임상적으로 치근 노출 등의 파괴적인 양상을 보였다. 2. 150g교정력을 준 대조군과 3번개체(실험군, Low PTH)는 일정한 치아 이동이 있었고, 4번개체(실험군, High PTH)는 일정한 치아 이동 속도를 보이다가 11주부터 치아 이동 속도가 증가하였다. 고용량의 PTH투여가 치아 이동의 속도를 증가 시킨 것으로 보인다. 3. 300g교정력을 준 4번개체(실험군, High PTH)는 대조군보다 6주 빠른 11주에 치아 이동이 마무리 되었다. 고용량의 PTH투여와 강한 교정력을 주었을 때, 치아 이동 속도는 빠르게 진행되었으나, 임상적으로 치근 노출 등의 파괴적인 양상이 보였다. 이상의 결과로 보았을 때 강한 교정력과 고용량 부갑상선호르몬(PTH)의 투여는 치아 이동 속도를 증가시킨다는 것을 알 수 있었다. 하지만 너무 급격한 치아 이동은 임상적으로 치근 노출 등의 파괴적인 양상으로 나타났고, 교정 치료에 적용 할 경우, 적정 교정력과 적정 농도의 PTH투여를 고려해야할 것이다.;This study aimed to investigate the effect of parathyroid hormone (PTH) administration and the change in orthodontic force on correction periods during orthodontic treatment. Four mongrel dogs with an average weight of 35 kg (age ≥ 10 months) were included in this study. Before the experiment, the first premolars were extracted to secure the distance between the maxillary left and right canines and the second premolars. A fabricated band with a welded button was attached to the canine (n = 8) and a crown with a welded button was attached to the second premolar (n = 8). To measure the distance between the canine and second premolar, a small groove was made in the canine tip and in the second premolar tip. A Ni-Ti closed coil spring was then used to connect the canine and the second premolar, wherein one side of the arch was loaded with 150 g of orthodontic force and the other side of the arch was loaded with 300 g of orthodontic force. Of the 4 mongrel dogs, subjects 1 and 2 were selected as the control group; subject 3 was injected locally with low-dose PTH (1 vial, 56.5 μg) once a week; and subject 4 was injected locally with high-dose PTH (2 vials, 113 μg) once a week. In the following weeks, the dogs were placed under general anesthesia administered via an intramuscular injection and alginate impressions were obtained; a model was constructed using these alginate impressions. This model was scanned using the Identica Blue 3D printer and analyzed using Exocad software to measure changes in the distance between the canine and the second premolar. The total experimental period was 19 weeks, wherein 14 models were produced and compared (at weeks 1–6, 8, 11, 13–15, 18, and 19). The original sentence was unclear. Please confirm that the edited sentence conveys your intended meaning. 1. When the increase in tooth movement at the respective arches was measured based on the difference in applied orthodontic force, the rate of tooth movement was greater with 300 g of orthodontic force than with 150 g of orthodontic force. However, this increased rate resulted in clinically destructive patterns such as root exposure. 2. Certain tooth movements were observed in the control group with 150 g of orthodontic force as well as in Subject 3 (experimental group, low-dose PTH). In Subject 4 (experimental group, high-dose PTH), constant tooth movement was noted until week 11, when the rate of tooth movement increased. High-dose PTH appeared to increase the rate of tooth movement. 3. In Subject 4, with 300 g of applied orthodontic force (experimental group, high-dose PTH), tooth movement was complete at 11 weeks, which was 6 weeks earlier than in the control group. Tooth movement rapidly progressed with high-dose PTH and strong orthodontic force. However, clinically destructive patterns such as root exposure were observed. Taken together, the results indicate that strong orthodontic force and high-dose PTH administration increased the rate of tooth movement. However, overly rapid tooth movement cannot be employed in orthodontic treatment because it can lead to clinically destructive patterns such as root exposure. Further study should be conducted with careful consideration of orthodontic force and proper PTH dose to ensure appropriate tooth movement during orthodontic treatment.
Fulltext
Show the fulltext
Appears in Collections:
임상치의학대학원 > 치위생학전공 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE