View : 572 Download: 0

Kinetics and mechanisms of catalytic water oxidation

Title
Kinetics and mechanisms of catalytic water oxidation
Authors
Fukuzumi, ShunichiLee, Yong-MinNam, Wonwoo
Ewha Authors
남원우Shunichi Fukuzumi이용민
SCOPUS Author ID
남원우scopus; Shunichi Fukuzumiscopusscopus; 이용민scopusscopusscopus
Issue Date
2019
Journal Title
DALTON TRANSACTIONS
ISSN
1477-9226JCR Link

1477-9234JCR Link
Citation
DALTON TRANSACTIONS vol. 48, no. 3, pp. 779 - 798
Publisher
ROYAL SOC CHEMISTRY
Indexed
SCIE; SCOPUS WOS
Document Type
Review
Abstract
The kinetics and mechanisms of thermal and photochemical oxidation of water with homogeneous and heterogeneous catalysts, including conversion from homogeneous to heterogeneous catalysts in the course of water oxidation, are discussed in this review article. Molecular and homogeneous catalysts have the advantage to clarify the catalytic mechanisms by detecting active intermediates in catalytic water oxidation. On the other hand, heterogeneous nanoparticle catalysts have advantages for practical applications due to high catalytic activity, robustness and easier separation of catalysts by filtration as compared with molecular homogeneous precursors. Ligand oxidation of homogeneous catalysts sometimes results in the dissociation of ligands to form nanoparticles, which act as much more efficient catalysts for water oxidation. Since it is quite difficult to identify active intermediates on the heterogeneous catalyst surface, the mechanism of water oxidation has hardly been clarified under heterogeneous catalytic conditions. This review focuses on the kinetics and mechanisms of catalytic water oxidation with homogeneous catalysts, which may be converted to heterogeneous nanoparticle catalysts depending on various reaction conditions.
DOI
10.1039/c8dt04341h
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE