View : 423 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author고응일-
dc.contributor.authorCarl M. Pearcy-
dc.date.accessioned2019-01-02T16:30:24Z-
dc.date.available2019-01-02T16:30:24Z-
dc.date.issued2019-
dc.identifier.issn0039-3223-
dc.identifier.issn1730-6337-
dc.identifier.otherOAK-23968-
dc.identifier.urihttp://dspace.ewha.ac.kr/handle/2015.oak/248118-
dc.description.abstractQuasinilpotent operators on Hilbert space are very little understood. Except for the classification, up to similarity, as parts of quasinilpotent backward weighted shifts of infinite multiplicity (Foias and Pearcy, 1974), and the recently introduced technique of extremal vectors (see the references), there are few known structure theorems or theorems proving the existence of invariant or hyperinvariant subspaces for such operators. In this paper we use a structure theorem for the class of weakly centered operators (Paulsen et al., 1995) to obtain a structure theorem for a certain subclass of quasinilpotent operators that immediately yields the existence of hyperinvariant subspaces for such operators.-
dc.languageEnglish-
dc.publisherPOLISH ACAD SCIENCES INST MATHEMATICS-IMPAN-
dc.subjectinvariant subspace-
dc.subjecthyperinvariant subsace-
dc.subjectquasinilpotent operator-
dc.subjectcentered operator-
dc.subjectweakly centered operator-
dc.titleHyperinvariant subspaces for a class of quasinilpotent operators-
dc.typeArticle-
dc.relation.issue3-
dc.relation.volume245-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage289-
dc.relation.lastpage296-
dc.relation.journaltitleSTUDIA MATHEMATICA-
dc.identifier.doi10.4064/sm171209-18-1-
dc.identifier.wosidWOS:000447651200005-
dc.author.googleJung, Il Bong-
dc.author.googleKo, Eungil-
dc.author.googlePearcy, Carl-
dc.contributor.scopusid고응일(7005763297)-
dc.date.modifydate20190123160753-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE