View : 1019 Download: 0

Damage propagation from component level to system level in the electricity sector

Title
Damage propagation from component level to system level in the electricity sector
Authors
Lee S.Hwang S.Park M.Lee H.-S.
Ewha Authors
황성주
SCOPUS Author ID
황성주scopus
Issue Date
2018
Journal Title
Journal of Infrastructure Systems
ISSN
1076-0342JCR Link
Citation
Journal of Infrastructure Systems vol. 24, no. 3
Keywords
Agent-based simulationEarthquakeElectricity sectorFunctionalityInput-output inoperabilityPower system
Publisher
American Society of Civil Engineers (ASCE)
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
In the aftermath of an earthquake, the electric power supply system may have a reduced ability to maintain its intended function, leading to service disruptions of other interdependent facilities until the electricity sector gets restored. In order to analyze such extra functionality losses, the authors have developed an agent-based inoperability input-output model with a focus on damage propagation from a component level to a system level in the electricity sector. In addition, this research presents the probabilistic matrix for the quantification of correlation coefficients between two connected electricity sector components (e.g., power generator and deliverer) and uses these coefficients to identify critical components from a perspective of the network's reliability. The developed model thus allows us to understand how a degradation of component affects the functionality of the whole electricity sector. To demonstrate the model's analytic capability, this research conducted case simulations using the data from 2011 Tohoku earthquake. The simulation results show that the impact of seismic damage in a network is generally underestimated because there is unforeseen damage propagation from the component to the system level. Moreover, the results demonstrate that demand-side efforts to conserve electricity usage and restoration priority setting in accordance with component criticality are crucial to ensure community resilience in case of disaster. © 2018 American Society of Civil Engineers.
DOI
10.1061/(ASCE)IS.1943-555X.0000437
Appears in Collections:
공과대학 > 건축도시시스템공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE