View : 123 Download: 42

Full metadata record

DC Field Value Language
dc.contributor.author이재혁-
dc.date.accessioned2018-11-15T16:30:07Z-
dc.date.available2018-11-15T16:30:07Z-
dc.date.issued2018-
dc.identifier.issn2073-8994-
dc.identifier.otherOAK-23599-
dc.identifier.urihttp://dspace.ewha.ac.kr/handle/2015.oak/246473-
dc.description.abstractWe consider certain En-type root lattices embedded within the standard Lorentzian lattice Z(n+1) (3 <= n <= 8) and study their discrete geometry from the point of view of del Pezzo surface geometry. The lattice Z(n+1) decomposes as a disjoint union of affine hyperplanes which satisfy a certain periodicity. We introduce the notions of line vectors, rational conic vectors, and rational cubics vectors and their relations to E-polytopes. We also discuss the relation between these special vectors and the combinatorics of the Gosset polytopes of type (n-4)(21).-
dc.languageEnglish-
dc.publisherMDPI-
dc.subjectlorentzian lattice-
dc.subjectweyl group-
dc.subjectroot lattice-
dc.subjectdual lattice-
dc.subjectlines-
dc.subjectgosset polytope-
dc.subjectE-polytope-
dc.titleLorentzian Lattices and E-Polytopes-
dc.typeArticle-
dc.relation.issue10-
dc.relation.volume10-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.journaltitleSYMMETRY-BASEL-
dc.identifier.doi10.3390/sym10100443-
dc.identifier.wosidWOS:000448561000023-
dc.identifier.scopusid2-s2.0-85055752205-
dc.author.googleClingher, Adrian-
dc.author.googleLee, Jae-Hyouk-
dc.contributor.scopusid이재혁(27169415900)-
dc.date.modifydate20181231112831-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE