View : 81 Download: 0

A Characterization of Binary Quadratic Optimization Problems

Title
A Characterization of Binary Quadratic Optimization Problems
Authors
최혜지
Issue Date
2018
Department/Major
대학원 수학과
Publisher
이화여자대학교 대학원
Degree
Master
Advisors
김선영
Abstract
Binary quadratic optimization problems (BQOPs) arise in various scientific and engineering fields, such as machine learning and signal processing. They are classified as NP-hard problems which do not have any algorithms to solve them in polynomial time. Therefore, they are solved approximately by semidefinite programming (SDP) relaxations in many cases. It was proved that a special class of quadratic optimization problems (QOPs) can obtain the exact solutions by SDP relaxations. We study the characteristics of the class of BQOPs that can be solved exactly by SDP relaxations in view of the dual theory.;이진 최적화 문제(Binary quadratic optimization problems)는 머신 러닝(machine learning)이나 신호화 과정(signal processing)과 같은 공학 분야에서 많이 나타나는 최적화 문제이다. 그러나 다항 시간(polynomial time)안에 풀 수 없는 NP-하드(NP-hard) 문제로 분류되어, 준정부호 프로그래밍(semidefinite programming)으로 완화시켜 최적화 값에 가까운 근사치를 구하는 방법을 이용해 풀이되고 있다. 그 동안의 연구에서 uniformly almost OD-nonpositive 조건을 만족하는 이차 최적화 문제(Quadratic optimization problems)는 준정부호 프로그래밍을 이용해서 풀 때 원 문제와 동일한 최적화 값을 주는 것이 증명되었다. 이 논문에서는 특별한 구조를 가지는 문제들을 더 세분화하여 라그랑지안(Lagrangian) 쌍대 문제(Dual problems)의 최적화 답(optimal solution)이 가지는 특성을 연구하였다.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE