View : 583 Download: 0

Enhancement of Thermoelectric Performance in Na-Doped Pb0.6Sn0.4Te0.95-xSexS0.05 via Breaking the Inversion Symmetry, Band Convergence, and Nanostructuring by Multiple Elements Doping

Title
Enhancement of Thermoelectric Performance in Na-Doped Pb0.6Sn0.4Te0.95-xSexS0.05 via Breaking the Inversion Symmetry, Band Convergence, and Nanostructuring by Multiple Elements Doping
Authors
Ginting D.Lin C.-C.Rathnam L.Kim G.Yun J.H.So H.S.Lee H.Yu B.-K.Kim S.-J.Ahn K.Rhyee J.-S.
Ewha Authors
김성진
SCOPUS Author ID
김성진scopus
Issue Date
2018
Journal Title
ACS Applied Materials and Interfaces
ISSN
1944-8244JCR Link
Citation
ACS Applied Materials and Interfaces vol. 10, no. 14, pp. 11613 - 11622
Keywords
nanostructurepower factorthermal conductivitythermoelectrictopological crystalline insulatorZT
Publisher
American Chemical Society
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Topological insulators have attracted much interest in topological states of matter featuring unusual electrical conduction behaviors. It has been recently reported that a topological crystalline insulator could exhibit a high thermoelectric performance by breaking its crystal symmetry via chemical doping. Here, we investigate the multiple effects of Na, Se, and S alloying on thermoelectric properties of a topological crystalline insulator Pb0.6Sn0.4Te. The Na doping is known to be effective for breaking the crystalline mirror symmetry of Pb0.6Sn0.4Te. We demonstrate that simultaneous emergence of band convergence by Se alloying and nanostructuring by S doping enhance the power factor and decrease lattice thermal conductivity, respectively. Remarkably, the high power factor of 22.3 μW cm-1 K-2 at 800 K is achieved for Na 1%-doped Pb0.6Sn0.4Te0.90Se0.05S0.05 mainly due to a relatively high Seebeck coefficient via band convergence by Se alloying as well as the suppression of bipolar conduction at high temperatures by the increase of energy band gap. Furthermore, the lattice thermal conductivity is significantly suppressed by PbS nanoprecipitates without deteriorating the hole carrier mobility, ranging from 0.80 W m-1 K-1 for Pb0.6Sn0.4Te to 0.17 W m-1 K-1 at 300 K for Pb0.6Sn0.4Te0.85Se0.10S0.05. As a result, the synergistically combined effects of breaking the crystalline mirror symmetry of topological crystalline insulator, band convergence, and nanostructuring for Pb0.6Sn0.4Te0.95-xSexS0.05 (x = 0, 0.05, 0.1, 0.2, and 0.95) give rise to an impressively high ZT of 1.59 at 800 K for x = 0.05. We suggest that the multiple doping in topological crystalline insulators is effective for improving the thermoelectric performance. © 2018 American Chemical Society.
DOI
10.1021/acsami.7b18362
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE