View : 146 Download: 0

Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors

Title
Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors
Authors
Kwon J.Lee S.-R.Yang K.-S.Ahn Y.Kim Y.J.Stadtman E.R.Rhee S.G.
Ewha Authors
이서구
SCOPUS Author ID
이서구scopusscopus
Issue Date
2004
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
ISSN
0027-8424JCR Link
Citation
Proceedings of the National Academy of Sciences of the United States of America vol. 101, no. 47, pp. 16419 - 16424
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Stimulation of cells with various peptide growth factors induces the production of phosphatidylinositol 3,4,5-trisphosphate (PIP3) through activation of phosphatidylinositol 3-kinase. The action of this enzyme is reversed by that of the tumor suppressor PTEN. With the use of cells overexpressing NADPH oxidase 1 or peroxiredoxin II, we have now shown that H2O2 produced in response to stimulation of cells with epidermal growth factor or platelet-derived growth factor potentiates PIP 3 generation and activation of the protein kinase Akt induced by these growth factors. We also show that a small fraction of PTEN molecules is transiently inactivated as a result of oxidation of the essential cysteine residue of this phosphatase in various cell types stimulated with epidermal growth factor, platelet-derived growth factor, or insulin. These results suggest that the activation of phosphatidylinositol 3-kinase by growth factors might not be sufficient to induce the accumulation of PIP3 because of the opposing activity of PTEN and that the concomitant local inactivation of PTEN by H2O2 might be needed to increase the concentration of PIP3 sufficiently to trigger downstream signaling events. Furthermore, together with previous observations, our data indicate that peroxiredoxin likely participates in PIP3 signaling by modulating the local concentration of H2O2.
DOI
10.1073/pnas.0407396101
Appears in Collections:
일반대학원 > 생명·약학부 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE