View : 693 Download: 0

Proteasome inhibition protects against diet-induced gallstone formation through modulation of cholesterol and bile acid homeostasis

Title
Proteasome inhibition protects against diet-induced gallstone formation through modulation of cholesterol and bile acid homeostasis
Authors
Lee, Eun-JiKim, Min HeeKim, Ye-RyungPark, Joo-WonPark, Woo-Jae
Ewha Authors
박주원
SCOPUS Author ID
박주원scopus
Issue Date
2018
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
ISSN
1107-3756JCR Link

1791-244XJCR Link
Citation
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE vol. 41, no. 3, pp. 1715 - 1723
Keywords
gallstone diseaseproteasome inhibitioncholesterol synthesisbile acid synthesislithogenic dietcholesterol secretion
Publisher
SPANDIDOS PUBL LTD
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Gallstone disease is one of the most prevalent and costly gastrointestinal disorders worldwide. Gallstones are formed in the biliary system by cholesterol secretions in bile, which result from excess cholesterol, a deficiency in bile salts or a combination of the two. The present study examined the effects of proteasome inhibition on gallstone formation using the proteasome inhibitors bortezomib (BT) and carfilzomib (CF). C57BL/6J mice were fed a lithogenic diet to generate gallstones and injected with BT or CF for 12 weeks. After 12 weeks of the lithogenic diet, 8 out of the 10 mice in the control group had developed gallstones, whereas none of the mice who received proteasome inhibitors had developed gallstones. Notably, the expression of genes associated with cholesterol synthesis (sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-CoA reductase), cholesterol secretion [AT P-binding cassette subfamily G member 5 (ABCG5) and ABCG8] and bile acid synthesis [cytochrome P450 family 7 subfamily A member 1 (Cyp7a1), Cyp7b1, Cyp27a1 and Cyp8b1] was reduced in the livers of mice injected with BT or CF. Cyp7a1 encodes cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in the synthesis of bile acid from cholesterol. The present study therefore measured the expression levels of transcription factors that are known to inhibit Cyp7a1 expression, namely farnesoid X receptor (FXR), pregnane X receptor (PXR) and small heterodimer partner (SHP). Although FXR, PXR and SHP expression was predicted to increase in the presence of proteasome inhibitors, the expression levels were actually reduced; thus, it was concluded that they were not involved in the proteasome inhibition-induced regulation of Cyp7a1. Further investigation of the mitogen-activated protein kinase and protein kinase A (PKA) signaling pathways in human hepatoma cells revealed that proteasome inhibition-induced c-Jun N-terminal kinase (JNK) phosphorylation reduced CYP7A1 and CYP27A1 expression. In addition, reduced PKA phosphorylation as a result of proteasome inhibition regulated ABCG5 and ABCG8 expression. In conclusion, these findings suggest that proteasome inhibition regulates cholesterol and biliary metabolism via the JNK and PKA pathways, and is a promising therapeutic strategy to prevent gallstone disease.
DOI
10.3892/ijmm.2017.3326
Appears in Collections:
의과대학 > 의학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE