View : 308 Download: 0

Hybrid Core-Nanomaterials for Applications in Green Nanotechnology

Title
Hybrid Core-Nanomaterials for Applications in Green Nanotechnology
Authors
장유진
Issue Date
2017
Department/Major
대학원 화학·나노과학과
Publisher
이화여자대학교 대학원
Degree
Doctor
Advisors
김동하
Abstract
Chapter Ⅰ A general introduction about the device construction and working mechanism of dye-sensitized solar cells (DSSCs), organic solar cells (OSCs) and lithium-oxygen (Li-O_(2)) batteries is described. Chapter Ⅱ In the first section, I propose hybrid Pt/carbon nanopatterns with an extremely low loading level of Pt catalysts derived from block copolymer (BCP) templates as an alternative type of counter electrodes (CEs) in DSSCs. DSSCs employing hybrid Pt/carbon with tailored configuration as CEs exhibit higher short-circuit current density (JSC) and conversion efficiencies as well as stability with a lapse of time compared with conventional cells based on sputtered Pt thin films, evidencing that the new class of hybrid nanostructures possess high potential for cost-effective electrodes in energy conversion devices. In the second section, I report a novel strategy to enhance the performance of DSSCs by incorporating small amounts of nanostructured carbon-TiO_(2) beads into the photoanode. A commercially available triblock copolymer, Pluronic P123, containing TiO_(2) precursors in the hydrophilic domains was coated onto SiO_(2) nanospheres and converted into graphitic carbons by thermal treatment in Ar atmosphere. By distributing carbon species with the size of ~50 nm throughout the TiO_(2) photoanode, the power conversion efficiency (PCE, η) of DSSC cell was improved by up to 10.1 % due to the increase in the value of JSC compared with that of neat TiO_(2) photoanode based DSSC cell, which was confirmed by photocurrent density-voltage (J-V) profile and incident photon-to-current conversion efficiency (IPCE). The introduction of carbons into TiO_(2) photoanode in DSSCs led to not only the decrease in the series resistance and the charge transfer resistance of photoanode but also the increase in lifetime of photoinjected electrons as evidenced by electrochemical impedance spectroscopy (EIS). In the last section, I suggest a rapid and cost-effective protocol for the fabrication of core@shell nanoparticles (NPs) consisting of TiO_(2) NPs decorated with thin carbon coatings to improve the performance of DSSCs. Carbon sheaths on TiO_(2) NPs was obtained by a simple heat treatment of glucose, which is one of the most abundant, economic, and eco-friendly carbohydrates, while TiO_(2) NPs were simultaneously crystallized, resulting in uniform distribution of the carbon moieties throughout the photoanode part of DSSC cells. A DSSC cell equipped with glucose-based carbon-TiO_(2) photoanode exhibited enhanced JSC and PCE by 20.9 and 11.6 %, respectively, compared with a DSSC cell containing neat TiO_(2) photoanode. The efficiency and performance of DSSC cells integrated with glucose-based carbons were further investigated by IPCE and EIS. The stability of the DSSC cells equipped with glucose-based carbon-TiO_(2) photoanode was also monitored. Chapter Ⅲ Upconversion is a unique optical property which is driven by a sequential photon pumping and generation of higher energy photons in a consecutive manner. The efficiency improvement in photovoltaic devices can be achieved when upconverters are integrated since upconverters contribute to the generation of extra photons. Despite numerous experimental studies confirming the relationship, fundamental explanations for a real contribution of upconversion to photovoltaic efficiency are still in demand. In this respect, I suggest a new approach to visualize the upconversion event in terms of surface photovoltage (SPV) by virtue of Kelvin probe force microscopy (KPFM). One of the most conventional polymer semiconductors, poly(3-hexyl thiophene) (P3HT), is employed as a sensitizer to generate charge carriers by upconverted light. KPFM measurements reveal that the light upconversion enabled the formation of charge carriers in P3HT, resulting in large SPV of 54.9 mV. It confirms that the energy transfer from upconverters to P3HT can positively impact on the device performance in OSCs. Chapter Ⅳ I suggest a better design of active materials for high performance OSCs based on plasmon-enhanced Förster resonance energy transfer (FRET) process. In this study, two advanced strategies are combined to obtain higher photovoltaic parameters: 1) light reuse by introducing a third component, squaraine (SQ) molecule, which is excited by emission from P3HT and provide additional charge carriers. It can effectively reduce the light loss occurred by recombination process in a conventional P3HT:PCBM (phenyl-C_(61)-butyric acid methyl ester) binary system; and 2) light manipulation by incorporating plasmonic NPs as a quaternary component into P3HT:PCBM:SQ ternary system. Au NPs provide a stronger electric field which can be coupled with incident light and promote the overall excitation process of organic sensitizers. As a result, OSC device with P3HT:PCBM:SQ:Au active layer showed 36% enhancement in PCE over the reference device with a binary active layer. The energy transfer between P3HT, SQ and Au NPs as well as charge carrier generation behaviors in their mixture was monitored by photoluminescence (PL) measurement. Chapter Ⅴ I demonstrate, for the first time, that RuO_(2) inverse opal (IO) structure which possesses highly ordered macropore layers has been developed and applied to Li-O_(2) battery as a cathode for the achievement of a better battery operation, including bifunctional characteristics and a low overpotential on discharge and charge. Along with a galvanostatic measurement of Li-O_(2) battery, in situ gas consumption/evolution behaviors on discharge and charge were monitored using differential electrochemical mass spectrometer (DEMS). RuO_(2) IO cathode particularly contributed to the reduction of charge overpotential by ~120 mV at a capacity of 0.5 mAh in LiNO_(3)/DMSO electrolyte via the formation of LiOH as a discharge product. It resulted in an extremely low discharge/charge overpotential of ~280 mV. It was the lowest value compared with that reported in previous studies on Li-O_(2) cells containing RuO_(2)-based cathodes.;본 학위논문은 지속 가능한 환경을 가능케 하는 기술로 대표되는 태양전지 및 배터리와 같은 에너지 변환·저장 소자 개발에 필수적인 하이브리드 원천 소재 연구를 다룬다. 제 1장에서는 본 학위논문에 대한 이해를 돕기 위하여 염료감응형 태양전지, 유기 태양전지 및 리튬-공기 배터리의 구성 및 작동원리에 대한 일반적 배경 지식에 대하여 서술한다. 제 2장에서는 탄소 소재를 활용한 염료감응형 태양전지 개발에 관련한 세 가지 연구를 소개한다. 먼저, 백금 나노입자가 분산된 박막형 하이브리드 탄소 나노구조체 제조에 대한 연구로, 염료감응형 태양전지 상대전극용 촉매제로 가장 효과적이라 알려져 있지만, 전지 제조 단가를 높이는 문제로 사용에 제한을 받고 있는 백금을 이용하되, 블록공중합체의 자기조립 성질을 바탕으로 백금 나노입자의 크기와 도입량을 효과적으로 조절하고, 무엇보다 백금 나노입자와 함께 탄소 단층 박막을 도입함으로써 극소량의 백금 사용만으로도 기존백금 상대전극과 대등한 광전변환 효율 달성이 가능함을 입증하였다. 다음으로, 염료감응형 태양전지의 광전극으로 사용되는 산화티타늄 나노입자의 일부를 탄소-산화티타늄 하이브리드 나노입자로 대체하여 광전변환 효율 향상을 유도한 연구를 소개한다. 태양광에 의해 여기된 염료가 전자를 생성하고 산화티타늄 나노입자를 매개로 그 전자를 전극으로 이동시킬 때, 광전극 전반에 분포한 탄소 소재가 전자 이동 시 계면 저항을 낮추고 전자 전달 속도는 증가시킴으로써 광전하의 재결합을 방지하고 광전변환 효율을 향상시키는 데 기여할 수 있었다. 동일한 목적으로 탄소 소재를 산화티타늄 기반 광전극 전반에 분포시키는 또 다른 연구를 수행하였는데, 이 경우 탄소 소재의 원료로 블록공중합체 대신 포도당을 활용함으로써 차별을 두었다. 제 3장에서는 광전변환 소자에 도입되고 있는 광활성층의 대부분이 주로 자외선 및 가시광선을 흡수하는데 반해, 태양광의 40% 이상을 적외선이 차지하고 있다는 점을 고려하여 적외선을 자외선 및 가시광선 영역의 빛으로 변환하는 상향변환 현상과 광전변환 소자를 접목하는 방안에 대해 다루고 있다. 유기태양전지의 광활성층으로 빈번히 사용되는 P3HT와 상향변환 나노입자를 결합하고 근적외선 조사 시 상향변환 현상에 의해 추가적으로 발생한 가시광이 P3HT의 광여기 및 광전하 발생량에 미치는 영향을 SPV 수치로 환산한 후, SPV 수치의 증가를 관찰함으로써 상향변환 나노입자가 유도하는 광전변환 효율의 실질적 증가치를 실험적으로 증명하였다. 제 4장에서는 고효율 태양전지 소자 제조를 목적으로 개발된 두 가지 주목 받는 기술을 한데 접목한 연구를 소개한다. P3HT에서 생성된 전자와 정공 쌍의 재결합으로 인해 발생하는 형광은 소자의 전하 손실을 야기하는데, SQ 분자가 FRET을 매개로 그 형광을 재흡수하여 추가적인 전자 발생을 유도함으로써 기존 P3HT 기반의 유기 태양전지 효율을 향상시킬 수 있었다는 점에 주목하여 여기에 귀금속 나노입자를 추가로 도입하고, 귀금속 나노입자 표면에서 발생하는 표면 플라즈몬과 입사광의 공명 현상이 발현하는 광여기의 강화 및 전하 발생량의 증가를 더해 기존 유기 태양전지의 광전변환 효율 대비 그 향상 효과가 매우 두드러지는 다성분계 유기 태양전지 개발이 가능함을 제시하였다. 마지막으로 제 5장에서는 RuO_(2) 역오팔 구조를 리튬-공기 배터리 소자의 캐소드에 도입하는 연구를 소개한다. LiNO_(3)가 포함된 DMSO 전해질을 RuO_(2) 역오팔 캐소드와 결합시킴으로써 캐소드에서 수행되는 산소 환원/발생 반응의 활성도 및 반응 속도를 향상시키고 리튬-공기 배터리의 문제점으로 지적되는 충방전 과전압 현상을 크게 감소시킬 수 있었다. 정전류법을 이용한 소자 특성 분석과 함께 DEMS를 이용한 기체 분석을 통해 충방전 시 소모 및 재발생되는 산소량을 계산하여 LiOH가 생성/분해되는 기작을 매개로 배터리 소자가 작동함을 관찰하였다.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE