View : 342 Download: 0

Study of Electrochemical Measurements of Gasotransmitters and Characterization of Nano-electrocatalysts

Title
Study of Electrochemical Measurements of Gasotransmitters and Characterization of Nano-electrocatalysts
Other Titles
생체신호전달기체의 전기화학적 측정 및 나노-전기화학촉매의 특성 연구
Authors
하예진
Issue Date
2017
Department/Major
대학원 화학·나노과학과
Publisher
이화여자대학교 대학원
Degree
Doctor
Advisors
이영미
Abstract
전기화학 기법은 효율이 높고 다양한 화학 반응에 적용이 가능하여 에너지 생산, 질병 진단 등 폭 넓은 분야에 사용된다. 특히, 전기화학적 바이오센서는 검출 한계가 낮고 반응 속도가 빠르며 실시간 측정이 가능하다는 장점이 있어 진단 및 연구에 널리 활용되고 있다. 전기화학 시스템에서 전극 물질의 촉매 활성은 시스템의 효율과 성능을 결정하는 매우 중요한 요소이다. 본 학위 논문에서는 생체 내에서 일시적으로 미량 존재하는 신호전달기체 측정을 위한 전기화학 바이오센서를 개발하고 이를 생물학적 연구에 적용하였다. 또한, 나노구조체를 합성하여 다양한 반응에서 전기화학 촉매로서의 활성을 연구하였다. 일산화질소 (nitric oxide, NO), 일산화탄소 (carbon monoxide, CO), 황화수소 (hydrogen sulfide, H_(2)S)의 세 가지 생체신호전달기체는 서로 긴밀히 연관 되어있어 이 기체들의 역할 및 관계를 이해하기 위해서는 세 기체들의 동시 측정이 필수적이다. 그러나, 측정 도구가 충분하지 않고 기체 간의 선택성의 문제로 인해 생체신호전달기체들의 정략적 측정은 어려움을 겪어왔다. 따라서 Part I에서는 생체신호전달기체들의 동시 측정을 위해 다양한 전기화학 바이오 센서들을 개발하였다. 먼저, 높은 선택성을 갖는 NO/CO 이중 미세센서를 개발하고 간질 쥐 뇌에 적용하였다. 실시간으로 변화하는 뇌 신호를 지역장전위(local field potential, LFP)를 이용하여 측정하고 이와 동시에 위치에 기반한 NO와 CO의 변화를 관찰하였다. 또한, 배양된 인간 신경 모세포종 세포(human neuroblastoma cell)를 글루타메이트(glutamate)로 활성화하여 NO와 CO를 측정하였다. NO/CO 이중 센서 제작 기법을 활용하여 CO 단일 측정 센서를 제작하고 간질 쥐 뇌에서 LFP 신호 및 뇌혈류 측정과 동시에 CO를 실시간으로 측정하는 연구에 적용하였다. 마지막으로, 최적화된 전극 표면 개질화를 통하여 세 가지 생체신호기체 (NO, CO, H_(2)S)를 실시간으로 동시에 측정할 수 있는 삼중 미세 센서를 개발하였다. Part II에서는 다양한 금속 산화물 나노구조체를 합성하고 전기화학 촉매로서의 활성을 연구하였다. 산화 이리듐 (iridium oxide) 나노선과 이리듐 (iridium)/산화 이리듐 나노선을 이용하여 산소환원반응, 과산화수소 산화·환원 반응, 도파민 산화 반응 촉매로서의 활성을 비교하였다. 산화 로듐 (rhodium oxide) 나노섬유 위에 합성된 산화 루테늄 (ruthenium oxide) 나노선은 과산화수소 환원 반응의 촉매 활성 연구에 활용되었다. 또한, 화학 기상 증착법 (chemical vapor deposition)을 이용하여 산화 레늄 (rhenium oxide) 나노막대 구조체를 합성하고 전기화학 촉매로서의 활성을 테스트하였다.;Electrochemical methods are used in extensive fields such as energy production, disease diagnoses, etc. due to high efficiency and applicability to various chemical reactions. Especially, electrochemical biosensors are widely applied to diagnoses and researches because of strong advantages of low detection limits, fast response time, real-time analyses, etc. For electrochemical systems, catalytic activities of electrodes are very important because catalysts determine efficiency and performance of the systems. In the dissertation, electrochemical biosensors were developed and applied to in-vivo and in-vitro researches for detecting gasotransmitters, which exist at low concentrations and have short half-lives in living organisms. Also, nanostructures were synthesized and tested as electrocatalysts for various reactions. Three gasotransmitters, NO, CO and H_(2)S are closely related to each other, and simultaneous measurements are required to study these gases. However, the quantitative measurements of these gasotransmitters have been a challenge due to the insufficient tools and problems of selectivity. In Part I, various electrochemical biosensors were developed for simultaneous measurements. Firstly, a highly-selective NO/CO dual microsensor was fabricated and applied to epileptic rat brains. Location-dependent NO and CO were monitored along with dynamic brain signals measured by local field potential (LFP) electrodes. In addition, the sensor was applied to human neuroblastoma cells to measure cellular NO and CO gases upon glutamate stimulations. CO single sensor was also fabricated and used to study CO changes in epileptic rat brains while LFP signal and cerebral blood flow were also monitored. Finally, a triple sensor, for simultaneous measurements of three gasotransmitters, NO, CO and H_(2)S, was developed with optimized electrode surface modifications. In Part II, various metal oxide nanostructures were synthesized and tested as electrocatalysts. Iridium oxide and iridium/iridium oxide nanowires were examined and compared as catalysts for oxygen reduction reaction, hydrogen peroxide (H_(2)O_(2)) redox reaction and dopamine oxidation reaction. Ruthenium oxide nanowires were synthesized on rhodium oxide nanofibers, and the activities were tested as catalysts for H_(2)O_(2) reduction reaction. Rhenium oxide nanorods were synthesized by chemical vapor deposition, and were tested as electrochemical catalysts.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE