View : 850 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor황성주-
dc.contributor.author이장미-
dc.creator이장미-
dc.date.accessioned2018-03-06T16:30:46Z-
dc.date.available2018-03-06T16:30:46Z-
dc.date.issued2018-
dc.identifier.otherOAK-000000147780-
dc.identifier.urihttp://dcollection.ewha.ac.kr/common/orgView/000000147780en_US
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/240397-
dc.description.abstractLow-dimensional nanostructure is a material with a diameter of nanoscale in certain directions, such as 0D quantum dot, 1D nanorod/tube/wire, 2D nanosheet/plate. There appears novel phenomenons that have never been observed when the size of material become smaller and smaller to nanoscale, thereby possessing quantum confinement effect in certain directions. Therefore, since the discovery of low-dimensional nanostructure, it become a main stream for scientific direction, evoking tremendous research efforts in most of the fields, such as chemistry, material science, catalytic science, and so on. Among the nanomaterial with low dimensionality, especially, the 2D nanosheets prepared from their layered compounds via exfoliation procedure are very special because of their unique physicochemical, optical, and electronic properties, which are caused by high anisotropic structure as well as confinement of electrons. The large surface area and sub-nanometer level thin thickness of the exfoliated nanosheets make them very powerful candidates for the hybrid-type nanomaterial. Because all the component ions are exposed to surface and act as a reaction site, the hybridization with 2D inorganic nanosheet gives rise to the strong electronic coupling, leading to the significant modification in physicochemical/electronic/optical properties of nanohybrid and concomitant outstanding properties in a wide range of energy-related areas. In addition, derived from the similar 2D morphology to widely-used graphene nanosheet, strong interaction can be achieved between 2D inorganic nanosheet and graphene, resulting not only in much more enhanced functionality upon the hybridization but also in suppression of severe self-restacking of graphene nanosheet itself. Also, the hybridization between 2D inorganic nanosheets and guest species can lead to the formation of highly porous hierarchical structure containing both of micro- and meso-pores, allowing the adsorption of diverse molecules with different size, specially, in the field of gas adsorption. The coexistence of micro- and meso-pore is caused by the house of card type stacking structure and insertion of guest species between few-layer stacked nanosheets, respectively. As well, the chemical compositions of the inorganic nanosheet can be finely controlled via the substitution-exfoliation strategy. After the heteroatom substitution in the lattice of inorganic solid by solid state reaction, the substituted inorganic nanosheet can be obtained via common delamination route from its host structure keeping intact. Taking into consideration the significant effect of chemical composition on electronic/optical properties, the optimization in photocatalytic functionality can be achieved on the variation of chemical compositions of inorganic nanosheet, which is attributed to the facile tuning in bandgap energy/position of semiconducting crystals. As mentioned above, derived from the all the exposed component ions on the large surface, anchoring of diverse functional groups on 2D inorganic nanosheet can be easily achieved with high reactivity, leading to the marked modification of surface properties. In chapter I, the comprehensive introduction of layered host structure for 2D inorganic nanosheet and their characteristics, the diverse liquid exfoliation strategies, and energy-related applications to be employed will be addressed. For the types of layered structure, it categorized as three kinds of layered structures, such as layered metal oxide, layered double hydroxide, and transition metal dichalcogenide. The liquid exfoliation routes spanning the chemical exfoliation, electrochemical exfoliation, and ultrasonic-assisted mechanical exfoliation will be dealt. Finally, the basic principles, operations, and research directions in short for photocatalysis, lithium-ion battery, and electrocatalysis will be accounted as a main energy-related applications. In chapter II, various kinds of 2D inorganic nanosheet-based nanohybrid with promising visible light-harvesting photocatalytic functionality are shown. 2D inorganic nanosheet presents electronic property in a wide spectrum from insulator to conductor depending on the compositions, enabling the various strategies in a wide spectrum for improving the photocatalytic functionalities. In addition, the electronic structure for 2D inorganic nanosheet can be easily tuned by anion and/or cation substitution in lattice of layered structure. In this part, the Ti5NbO12, ZnCr-layered double hydroxide (LDH), Rh-substituted titanate, and graphitic carbon nitride (g-C3N4) nanosheets with semiconducting feature and metallic RuO2 nanosheet are adopted as a hybridization building block for photocatalytic crystals. It is noteworthy that the strong electronic coupling can be realized by hybridization with 2D inorganic nanosheet, leading to facilitated mobility of charge carrier at the heterojunction interface, life time elongation, and suppression of electronhole recombination. These effects are vitally needed for obtaining the improved the photocatalytic efficiency of nanohybrids, suggesting the beneficial role of 2D inorganic nanosheet in photocatalytic system. In chapter III, a couple of promising electrode materials for lithium-ion batteries is derived from layered inorganic structure and its exfoliated nanosheet. Employing the graphene nanosheet as a template for realizing the highly ordered 2D aggregate of anatase TiO2 nanoparticles is developed for anode material of lithium ion battery. As supported by electrochemical impedance spectroscopy (EIS) measurement, the obtained 2D aggregates with planar ordering exhibits enhanced Li ion conductivity, resulting in the promising capacity for anode material. The calcination of NiFe-LDH material under acetylene (C2H2) gas condition induces not only the nanocrystalline CNiONiFe2O4 nanocomposite with intimate coupling but also the rapid phase transformation of only 5 min, suggesting the beneficial use of C2H2 gas in synthetic aspect. The obtained carbon-incorporated mixed metal oxide exhibits better anode capacity than the materials calcined under ambient atmosphere, suggesting the merit of C2H2 gas in improving the electrode performance as well. Furthermore, Carbon-coated porous structure is synthesized by the exfoliation-reassembling process and following calcination under C2H2 condition for anode electrode of lithium-ion battery. Chapter VI provides the overall conclusion of these works and further perspective for the exploration of 2D inorganic nanosheet-based functional materials.;다른 나노구조 소재들과 달리, 층상화합물의 박리화 반응으로 얻어지는 2차원 나노시트는 양자구속된 전자들과 높은 비등방성 구조에서 기인한 특이한 물리화학적, 광학적, 그리고 전기적 성질을 나타내므로 매우 특별한 소재이다. 마이크로 크기의 면적과 1 나노미터 이하의 얇은 두께를 가지는 2차원 무기 나노시트는 표면에 구성된 모든 원소들을 드러내고 있어 다른 외부종과의 강력한 상호작용을 이룰 수 있기 때문에 2차원 무기나노시트를 다양한 성질을 가지는 혼성구조의 나노물질을 위한 매우 강력한 후보군으로 떠오르고 있다. 이에 더하여, 2차원 무기 나노시트와 외부종의 혼성화는 카드집 쌓임 구조에서 비롯한 높은 다공성의 계층적 구조를 형성할 수 있다. 또한, 무기 나노시트의 화학조성은 치환-박리 방법에 의해 손쉽게 조절될 수 있다. 나노시트의 넓은 표면에 다양한 작용기를 도입하는 것은 나노시트의 표면성질의 변화를 유도할 수도 있다. 1단원에서는 층상 금속산화물, 층상 금속수산화물, 그리고 층상 금속 찰코겐화물을 포함하는 다양한 층상화합물의 결정구조와 그들의 박리 전략, 그리고 적용가능한 에너지 분야에 대한 포괄적인 소개가 다뤄진다. 2단원에서는 유망한 가시광 감응 광촉매 활성을 나타내는 다양한 2차원 무기 나노시트 기반 나노혼성체들이 보여진다. 2차원 무기 나노시트는 그들의 화학조성에 따라 부도체에서 전도체까지 다양한 전기적 성질을 나타내고 있기 때문에 광촉매 활성을 향상시키기 위해 넓은 영역의 다양한 전략에 적용이 가능하다. 그리고, 2차원 무기 나노시트의 전기적 성질은 층상구조 격자에 음이온종 또는 전이금속 양이온종의 치환을 통해 쉽게 조절된다. 본 단원에서는, 반도체 성질을 띄는 Ti5NbO12, ZnCr-LDH, Rh 치환된 산화티탄, 그리고 카본 나이트라이드 나노시트와 금속성 성질을 띄는 RuO2 나노시트를 광촉매 소재의 혼성 지지체로 적용하였다. 주목할만한 점은, 2차원 무기 나노시트와의 혼성화에 의해 강력한 전기결합이 유도되었고 이는 이종계면에서의 전하이동도를 촉진하였고 수명을 연장하였으며 이로 인하여 전자의 정공의 재결합을 억제하는 효과를 이끌었다. 이러한 효과들은 향상된 광촉매 활성을 얻기 위해 매우 필요하며 이로써 광촉매 장치에서의 2차원 무기 나노시트의 유용한 역할을 제시한다. 3단원에서는 층상 무기소재와 그의 박리된 나노시트로부터 기인된 리튬배터리의 전극소재들에 대해 나타내고 있다. 아나타제 구조를 나타내는 산화티탄 나노입자들을 잘 정렬된 2차원 응집체로 형성하기 위해 그래핀 나노시트를 지지체로 사용하였고 이를 리튬배터리의 음전극으로 개발하였다. 전기화학적 임피던스 분광법을 통하여 얻어진 잘 정렬된 2차원 나노입자 응집체가 향상된 리튬이온 전도성을 나타내었고 이로 인해 유망한 배터리 용량을 나타냄을 확인하였다. 또한, 아세틸렌 기체 조건 하에서 NiFe-LDH 소재의 열처리는 강한 결합을 이루고 있는 CNiONiFe2O4 나노컴포지트의 형성뿐만 아니라 5분이라는 매우 짧은 시간안에 상전이를 일으킬 수 있고 이는 합성측면에서 아세틸렌 기체의 유용한 활용을 제시한다. 이렇게 얻어진 CNiONiFe2O4 나노혼성체는 공기조건에서 열처리한 소재보다 더 높은 음극용량을 나타내었고 이는 전극성능을 향상시키는 데에 아세틸렌 기체의 장점을 제시한다. 이에 더하여, 전도성 탄소소재가 증착된 다공성 구조는 박리-재조합 반응과 이에 연속적인 아세틸렌 기체 조건 하에서의 열처리를 통하여 합성된다. 4단원에서는 in-situ 분광법을 통해 결정성의 -MnO2 의 높은 전기화학적 산소발생 활성에 기여하는 중요한 요인들을 설명한다. In-situ 분광법으로 -MnO2 격자의 철 이온 치환은 전기장 하에서 MnO6 팔면체의 정렬도와 전하이동 동역학을 향상시킴을 명확하게 나타내었고, 이로 인해 철 이온이 치환된 -MnO2 소재가 높은 전기화학적 산소발생활성을 나타냄을 확인한다. 5단원에서는 산화티탄 나노시트와 그래핀의 혼성 필름을 혼합된 산화티탄 나노시트와 그래핀 나노시트의 혼합 콜로이드의 감압여과법을 이용하여 제작하였으며 이때 사용된 산화티탄 나노시트는 두 가지의 다른 결정구조를 나타낸다. 얻어진 혼성 필름은 Microcystic aeruginosa 라는 해로운 녹조의 성장을 억제하기 위해 사용된다. 얻어진 혼성필름의 결정구조, 표면성질, 물리화학적 성질에 산화티탄 나노시트의 결정구조가 미치는 영향을 체계적으로 관찰한다. 또한 본 혼성필름을 이용하여 녹조성장을 억제하였을 때의 메커니즘도 체계적으로 탐색한다. 마지막으로, 6단원에서는 본 연구들의 개괄적인 결론과 2차원 나노시트 기반 기능성 소재들의 개발에 대한 전망을 다룬다.-
dc.description.tableofcontentsI. General introduction 1 I.1. Inorganic two-dimensional layered compound 2 I.1.1. Layered metal oxide 4 I.1.2. Layered double hydroxide 8 I.1.3. Layered metal chalcogenide 10 I.2. Exfoliation methods of inorganic layered compound 12 I.2.1. Chemical intercalation of organic ion 14 I.2.2. Electrochemical Li-intercalation 17 I.2.3. Sonication-assisted mechanical exfoliation 19 I.3. Versatile energy-related functionalities 21 I.3.1. Photocatalysis 23 I.3.2. Secondary batteries 27 I.3.3. Electrocatalysis 29 I.4. References and notes 31 II. 2D nanosheet-based nanohybrids for photocatalysis 33 II.1. A facile exfoliation-crystal growth route to multicomponent Ag2CO3/Ag-Ti5NbO14 nanohybrids with improved visible light photocatalytic activity 34 II.1.1. Introduction 35 II.1.2. Experimental section 38 II.1.3. Results and discussion 41 II.1.4. Conclusion 57 II.2. A linker-mediated self-assembly method to couple isocharged nanostructures: layered double hydroxideCdS nanohybrids highly active for visible light-induced H2 generation 58 II.2.1. Introduction 59 II.2.2. Experimental section 62 II.2.3. Results and discussion 65 II.2.4. Conclusion 78 II.3. A crucial role of Rh substituent ion in photoinduced internal electron transfer and enhanced photocatalytic activity of CdSTi(5.2x)/6Rhx/2O2 nanohybrids 79 II.3.1. Introduction 80 II.3.2. Experimental section 82 II.3.3. Results and discussion 85 II.3.4. Conclusion 106 II.4. A conductive hybridization matrix of RuO2 two-dimensional nanosheets: a hybrid-type photocatalyst 108 II.4.1. Introduction 109 II.4.2. Experimental section 111 II.4.3. Results and discussion 114 II.4.4. Conclusion 130 II.5. Incorporation of layered double hydroxide nanocrystal into mesoporous g-C3N4 for enhancing visible light-induced H2 production efficiency 132 II.5.1. Introduction 133 II.5.2. Experimental section 135 II.5.3. Results and discussion 137 II.5.4. Conclusion 150 II.6. References and notes 151 III. Nanohybrids for lithium-ion batteries 160 III.1. Graphene nanosheets as a platform for the 2D ordering of metal oxide nanoparticles: mesoporous 2D aggregate of anatase TiO2 nanoparticles with improved electrode performance 161 III.1.1. Introduction 162 III.1.2. Experimental section 164 III.1.3. Results and discussion 166 III.1.4. Conclusion 184 III.2. Rapid synthetic route to nanocrystalline carbon-mixed metal oxide nanocomposites with enhanced electrode functionality 185 III.2.1. Introduction 186 III.2.2. Experimental section 189 III.2.3. Results and discussion 192 III.2.4. Conclusion 216 III.3. A vapor-phase carbon-coating route to efficient inorganic nanosheet-based electrodes 217 III.3.1. Introduction 218 III.3.2. Experimental section 221 III.3.3. Results and discussion 222 III.3.4. Conclusion 231 III.4. References and notes 232 IV. Overall conclusions and future scope 240 V. Appendix 244 V.1. Understanding the crucial role of local crystal order in electrocatalyst activity of crystalline metal oxide 245 V.1.1. Introduction 246 V.1.2. Experimental section 249 V.1.3. Results and discussion 252 V.1.4. Conclusion 269 V.1.5. References and notes 271 V.2. Water-floating nanohybrid films of layered titanate-graphene for sanitization of algae without secondary pollution 276 V.2.1. Introduction 277 V.2.2. Experimental section 280 V.2.3. Results and discussion 282 V.2.4. Conclusion 300 V.2.5. References and notes 301 V.3. Curriculum Vitae 304 국문초록 314 감사의 글 319-
dc.formatapplication/pdf-
dc.format.extent10803565 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc500-
dc.titleSynthesis, Characterization and Energy-Related Applications of 2D Inorganic Nanosheet-Based Nanohybrids-
dc.typeDoctoral Thesis-
dc.format.pagexii, 317 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 화학·나노과학과-
dc.date.awarded2018. 2-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE