View : 36 Download: 0

Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications

Title
Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications
Authors
Chen M.Kim S.-H.Jung H.-J.Hyun J.-H.Choi J.H.Lee H.-J.Huh I.-A.Hur J.
Ewha Authors
최정현
SCOPUS Author ID
최정현scopus
Issue Date
2017
Journal Title
Water Research
ISSN
0043-1354JCR Link
Citation
vol. 121, pp. 150 - 161
Keywords
Benthic fluxDOMEEM-PARAFACImpoundmentMass balancePore water
Publisher
Elsevier Ltd
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
In order to understand the characteristics and dynamics of dissolved organic matter (DOM) in the sediment of rivers affected by impoundments, we examined the vertical profiles and the benthic fluxes of DOM in four different core sediments located at upstream sites of weirs in major rivers of South Korea. In three out of four sites, exponential accumulation of dissolved organic carbon (DOC) with depth was observed with the signature of seasonal variability. Except for the site displaying a below-detection limit of Fe(II), the general accumulation trends of DOC with depth was concurrent with the increases of Fe(II) and NH4 + and the decrease of PO4 3-, signifying a close linkage of the DOM dynamics with anaerobic respiration via iron reduction, an important early diagenesis pathway. The estimated benthic fluxes from the cores revealed that the sediments likely serve as DOC, chromophoric DOM (CDOM), and fluorescent DOM (FDOM) sources to the overlying water. The benthic effluxes based on DOC were comparable to the ranges previously reported in lake and coastal areas, and those of CDOM and FDOM showed even higher levels. These findings imply that impoundment-affected river systems would change the DOM composition of the overlying water, ultimately influencing the subsequent water treatment processes such as disinfection byproducts production and membrane fouling. A simple mass balance model indicated that the impoundment-affected river sediments may operate as a net carbon sink in the environments due to a greater extent of sedimentation compared to the estimated benthic efflux and sediment biological respiration. © 2017 Elsevier Ltd
DOI
10.1016/j.watres.2017.05.022
Appears in Collections:
엘텍공과대학 > 환경공학전공 > Journal papers
Files in This Item:
There are no files associated with this item.


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE