View : 37 Download: 0

Role of Heteronuclear Interactions in Selective H-2 Formation from HCOOH Decomposition on Bimetallic Pd/M (M = Late Transition FCC Metal) Catalysts

Title
Role of Heteronuclear Interactions in Selective H-2 Formation from HCOOH Decomposition on Bimetallic Pd/M (M = Late Transition FCC Metal) Catalysts
Authors
Cho, JinwonLee, SangheonYoon, Sung PilHan, JongheeNam, Suk WooLee, Kwan-YoungHam, Hyung Chul
Ewha Authors
이상헌
SCOPUS Author ID
이상헌scopusscopus
Issue Date
2017
Journal Title
ACS CATALYSIS
ISSN
2155-5435JCR Link
Citation
vol. 7, no. 4, pp. 2553 - 2562
Keywords
H-2 productionlattice distancesurface charge polarizationcore shellHCOOHbimetallic catalysts
Publisher
AMER CHEMICAL SOC
Indexed
SCIE; SCOPUS WOS
Abstract
In this study, by using spin-polarized density functional theory calculations, we have elucidated the role of heteronuclear interactions in determining the selective H-2 formation from HCOOH decomposition on bimetallic Pd(shel)l/M-core (M = late transition FCC metal (Rh, Pt, Ir, Cu, Au, Ag)) catalysts. We found that the catalysis of HCOOH decomposition strongly depends on the variation of surface charge polarization (ligand effect) and lattice distance (strain effect), which are caused by the heteronuclear interactions between surface Pd and core M atoms. In particular, the contraction of surface Pd Pd bond distance and the increase in electron density in surface Pd atoms in comparison to the pure Pd case are responsible for the enhancement of the selectivity to H-2 formation via HCOOH decomposition. Our calculations also unraveled that the d band center location and the density of states for the d band (particularly d(z)(2), d(yz), and d(xz)) near the Fermi level are the important indicators that explain the impact of strain and ligand effects in catalysis, respectively. That is, the surface lattice contraction (expansion) leads to the downshift (upshift) of d band centers in comparison to the pure Pd case, while the electronic charge increase (decrease) in surface Pd atoms results in the depletion (augmentation) of the density of states for d(z2), d(yz), and d(xz) orbitals. Our study highlights the importance of properly tailoring the surface lattice distance (d band center) and surface charge polarization (the density of states for d(z2), d(yz), and d(xz) orbitals near the Fermi level) by tuning the heteronuclear interactions in bimetallic Pd-shell/M-core catalysts for enhancing the catalysis of HCOOH decomposition toward H-2 production, as well as other chemical reactions.
DOI
10.1021/acscatal.6b02825
Appears in Collections:
엘텍공과대학 > 화학신소재공학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE