View : 785 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.authorShunichi Fukuzumi*
dc.date.accessioned2017-04-25T01:04:29Z-
dc.date.available2017-04-25T01:04:29Z-
dc.date.issued2017*
dc.identifier.issn0947-6539*
dc.identifier.issn1521-3765*
dc.identifier.otherOAK-20420*
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/235018-
dc.description.abstractAddition of 1equiv of TFA to an acetone solution containing dodecaphenylporphyrin (H2DPP) in the presence of 10% MeOH (v/v) resulted in selective formation of a monoprotonated form (H3DPP+), in sharp contrast to protonation of H2DPP directly affording a diprotonated form (H4DPP2+) in acetone in the absence of MeOH. The crucial role of MeOH for selective H3DPP+ formation was interpreted as hydrogen-bonding stabilization of H3DPP+, since a MeOH molecule was found to form hydrogen bonds with an NH proton of H3DPP+ in the crystal. The selectivity of H3DPP+ formation was evaluated by the formation yield of H3DPP+, which increased when elevating the portion of MeOH (0-10%) in acetone with saturation behavior, suggesting that H3DPP+ is stabilized by hydrogen bonding with MeOH even in solution, together with the thermodynamic parameters determined from a van't Hoff plot based on the spectroscopic titration. Femto- and nanosecond laser flash photolysis allowed us to elucidate the photodynamics of H3DPP+ in intermolecular photoinduced electron transfer (ET) from ferrocene derivatives as one-electron donors to the triplet excited state of H3DPP+ as an electron acceptor. The second-order rate constants of the ET reactions were evaluated in light of the Marcus theory of ET. The reorganization energy of ET was determined to be 1.87eV, which is slightly larger than that of H4DPP2+ in acetonitrile (1.69eV), due to larger structural change upon ET than that of H4DPP2+.*
dc.languageEnglish*
dc.publisherWILEY-V C H VERLAG GMBH*
dc.subjecthydrogen bonds*
dc.subjectmonoprotonated porphyrins*
dc.subjectnonplanar porphyrins*
dc.subjectelectron transfer*
dc.subjectpolar protic solvents*
dc.titleThermodynamics and Photodynamics of a Monoprotonated Porphyrin Directly Stabilized by Hydrogen Bonding with Polar Protic Solvents*
dc.typeArticle*
dc.relation.issue19*
dc.relation.volume23*
dc.relation.indexSCIE*
dc.relation.indexSCOPUS*
dc.relation.startpage4669*
dc.relation.lastpage4679*
dc.relation.journaltitleCHEMISTRY-A EUROPEAN JOURNAL*
dc.identifier.doi10.1002/chem.201606012*
dc.identifier.wosidWOS:000399326500020*
dc.identifier.scopusid2-s2.0-85015446632*
dc.author.googleSuzuki, Wataru*
dc.author.googleKotani, Hiroaki*
dc.author.googleIshizuka, Tomoya*
dc.author.googleOhkubo, Kei*
dc.author.googleShiota, Yoshihito*
dc.author.googleYoshizawa, Kazunari*
dc.author.googleFukuzumi, Shunichi*
dc.author.googleKojima, Takahiko*
dc.contributor.scopusidShunichi Fukuzumi(35430038100;58409757400)*
dc.date.modifydate20240130092215*
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE