View : 1240 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김희선-
dc.contributor.author정연희-
dc.creator정연희-
dc.date.accessioned2017-03-24T01:03:53Z-
dc.date.available2017-03-24T01:03:53Z-
dc.date.issued2016-
dc.identifier.otherOAK-000000121086-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/234816-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000121086-
dc.description.abstractLonchocarpine은 항산화, 항염증, 항균 및 신경 보호 효과를 갖는 Abrus precatorius에서 분리한 신규 천연 화합물이다. Lonchocarpine의 뇌에서의 약리적인 활성은 지금까지 보고되고 있지 않았기에, 본 연구에서는 뇌 glial 세포에서 lonchocarpine의 항염증 작용과 항산화 작용을 조사하고 상세한 분자 메커니즘을 분석했다. 그리고, in vitro 세포배양 시스템 및 in vivo 동물모델에서 TLR3 및 TLR4 리간드로 유도되는 신경 염증에 대한 lonchocarpine의 억제 효과를 확인하였다. 연구의 첫 번째 부분에서는 LPS 또는 poly(I:C)에 의해 유도되는 염증 반응에 대한 lonchocarpine의 영향을 조사하였다. LPS 및 poly(I:C)는 대식세포와 소교세포 같은 염증성 세포 표면 수용체(TLR)에 의해 식별되는 세균의 구성성분이나 바이러스의 모방물로 알려져 있다. 본 연구에서는 lonchocarpine이 LPS 혹은 poly(I:C)에 의해 증가된 NO와 염증성 사이토카인의 생산과 발현을 억제하는 것을 발견했다. RT-PCR 분석으로, lonchocarpine은 BV2 세포에서 LPS와 poly(I:C)에 의해 증가된 IL-1β, IL-6, iNOS 및 COX-2의 mRNA 발현을 억제했지만, TNF-α는 전사 후 수준에서 조절되는 것을 확인하였다. Lonchocarpine의 항염증 효과는 또한 LPS 혹은 poly(I:C) 의 투여에 의해 유발되는 전신염증모델 마우스의 뇌에서도 확인할 수 있었다. Iba-1 염색을 통해, lonchocarpine이 피질과 해마에 발현되는 활성화된 소교세포의 수를 감소시키는 것을 확인하였다. Lonchocarpine의 복강투여는 LPS 혹은 poly(I:C)에 의해 대뇌 피질에서 유도된 iNOS, COX-2, TNF-α, IL-1β 및 IL-6의 mRNA 발현을 억제하였다. 다음으로, lonchocarpine의 항염증 작용에 관여하는 분자적 메커니즘을 분석하였다. Lonchocarpine은 염증 유발 유전자 발현에 중요한 전사 인자인 NF-κB 활성을 조절함으로써 항염증 효과를 발휘하는 것을 발견하였다. 따라서 lonchocarpine은 NF-κB의 DNA 결합과 전사 활성, NF-κB의 p65의 핵으로의 이동 및, IκBα의 인산화와 분해를 감소 시켰다. 또한 상위 신호 전달 경로로, lonchocarpine이 IKK 및 TAK1의 인산화를 저해시키는 것을 확인하였다. 그리고 lonchocarpine은 LPS 자극 된 BV2 세포에서 TLR4의 발현 및 MyD88과 IRAK4의 상호 작용을 억제하였다. 이러한 결과를 통하여 lonchocarpine은 소교세포에서 LPS에 의한 TLR4/MyD88-IRAK4/TAK1/NF-κB 신호 전달 경로를 억제함으로써 항염증 작용을 보인다고 추측 할 수 있었다. 본 연구의 두 번째 부분에서는 쥐의 성상 세포에서 lonchocarpine의 항산화 효과를 조사했다. Lonchocarpine는 과산화수소로 처리 된 성상 세포에서 활성 산소종(ROS)의 생산을 억제하였다. Nrf2/ARE에 의해 조절되는 HO-1, NQO1, SOD-2 및 catalase 등의 phase II 항산화 효소의 mRNA 및 단백질의 발현을 lonchocarpine이 증가시켰다. 자세한 기전연구를 통하여 lonchocarpine은 ARE 위치에 Nrf2의 결합을 증가시켜 항산화 효소의 발현을 증가시킴을 알 수 있었다. 또한 lonchocarpine은 AMPK와 MAPK의 인산화를 증가 시켰다. 각 신호 전달 경로의 억제제를 성상세포에 처리하여 처리하여 확인 한 결과, AMPK, JNK와 p38 경로는 lonchocarpine에 의해 유도 된 HO-1의 발현과 조절에 관여함을 알 수 있었다. 결론적으로, 본 연구를 통해서 뇌의 소교세포와 성상세포에서 lonchocarpine의 항염증 작용과 항산화 작용을 규명하였다. 이러한 연구결과는, lonchocarpine이 신경 염증과 산화 스트레스를 동반하는 다양한 신경 퇴행성 질환에 치료제로 응용 될 수 있는 가능성을 제시해 준다.;Lonchocarpine is a natural compound isolated from Abrus precatorius, which has anti-oxidant, anti-inflammatory, anti-proliferative and neuroprotective effects. However, the structure and pharmacological activity of lonchocarpine in the brain have not been reported until now. In the present study, I investigated the anti-inflammatory and anti-oxidant effects of lonchocarpine in brain glial cells and analyzed detailed molecular mechanisms. In the first part of this study, I examined the effects of lonchocarpine on inflammatory responses induced by lipopolysaccharide (LPS) or polyinosinic-polycytidylic acid (poly(I:C)) in in vitro and in vivo neuroinflammatory conditions. LPS and poly(I:C) are known as bacteria or virus mimetics which are recognized by toll-like receptors (TLRs) on the surface of inflammatory cells such as macrophages and microglia. I found that lonchocarpine suppressed the production of NO and pro-inflammatory cytokines in LPS- or poly(I:C)-stimulated BV2 microglial cells. RT-PCR analysis showed that lonchocarpine suppressed the expression of iNOS, COX-2, IL-1β and IL-6 at transcriptional level, but TNF-α at post-transcriptional level in LPS- or poly(I:C)-stimulated BV2 cells. The anti-inflammatory effects were verified in the mouse brain of systemic inflammation induced by administration of LPS or poly(I:C). Lonchocarpine reduced the number of Iba-1-positive activated microglia in the cortex and hippocampus. Moreover, lonchocarpine suppressed the mRNA expressions of iNOS, COX-2, TNF-α, IL-1β and IL-6 in the cerebral cortex of LPS- or poly(I:C)-injected mice. Next, I analyzed molecular mechanisms underlying the anti-inflammatory effects of lonchocarpine. I found that lonchocarpine exerts anti-inflammatory effects by modulating NF-κB activity, an important transcription factor for pro-inflammatory gene expression. Thus, lonchocarpine inhibited DNA binding and transcriptional activity of NF-κB in LPS- or poly(I:C)-stimulated BV2 cells. In addition, lonchocarpine reduced the phosphorylation and degradation IκBα, an inhibitory counterpart protein of NF-κB, resulting in decreased translocation of NF-κB p65 subunit into nucleus. Analysis of further upstream signaling pathways showed that lonchocarpine inhibits the phosphorylation of IκB kinase (IKK) and TAK1. Moreover, lonchocarpine suppressed TLR4 expression and the interaction of MyD88-IRAK4 in LPS-stimulated BV2 cells. The data suggest that TLR4/MyD88-IRAK4-TAK1-NF-κB signaling pathways are involved in anti-inflammatory effects of lonchocarpine in LPS-stimulated microglia. In the second part of the study, I examined the anti-oxidant effect of lonchocarpine in rat primary astrocytes. Lonchocarpine inhibited reactive oxygen species (ROS) production in hydrogen peroxide-treated astrocytes. Lonchocarpine increased mRNA and protein expression of phase II anti-oxidant enzymes, such as HO-1, NQO1, SOD-2 and catalase that are under the control of Nrf2/ARE signaling pathway. Further mechanistic studies showed that lonchocarpine increases the DNA binding of Nrf2 to anti-oxidant response element (ARE), and ARE-mediated transcriptional activities. In addition, lonchocarpine increased the phosphorylation of AMPK and three types of MAP kinases. By treatment of astrocytes with specific inhibitor of each signaling pathway, AMPK, JNK and p38 pathways were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. In conclusion, the present study demonstrates the anti-inflammatory and anti-oxidant effects of lonchocarpine in brain microglia and astrocytes. The data collectively suggest that lonchocarpine may have therapeutic potential for various neurodegenerative diseases that are accompanied by neuroinflammation and oxidative stress.-
dc.description.tableofcontentsI. INTRODUCTION 1 A. Microglia and neuroinflammation 1 B. TLR4 signaling mediates microglial activation in the CNS 3 C. TLR3 signaling mediates microglial activation in the CNS 5 D. Antioxidant effect of astrocyte and ARE-mediated neuroprotection 6 E. Pharmacological effect of lonchocarpine and Abrus precatorius 8 F. STUDY OBJECT 11 II. MATERIALS AND METHODS 12 A. Isolation of lonchocarpine from Abrus precatorius 12 B. Reagents 13 C. Cell culture 13 D. Rat primary astrocyte culture 13 E. Cell viability test 14 F. Mice 14 G. LPS treatment 15 H. Poly(I:C) treatment 15 I. Measurement of nitric oxide, ROS, and cytokines 15 J. Electrophoretic mobility shift assay (EMSA) 16 K. Immunocytochemistry 16 L. Immunoprecipitation (IP) 17 M. Immunohistochemistry 18 N. Western blot analysis 18 O. RT-PCR 19 P. Transient transfection and luciferase assay 21 Q. Microglia-neuronal cell coculture 21 R. Statistical analysis 22 III. RESULTS 23 A. Anti-inflammatory mechanism of lonchocarpine in TLR4 signaling induced neuroinflammation 23 1. Lonchocarpine suppressed iNOS and pro-inflammatory mediators in LPS-stimulated microglia 23 2. Lonchocarpine inhibited microglial activation, TNF-α level of the serum, and pro-inflammatory cytokine expression in LPS-induced septic mice 28 3. Lonchocarpine suppressed production of ROS, and expression and phosphorylation of NADPH oxidase subunits 31 4. Lonchocarpine suppressed NF-κB signaling pathway in LPS stimulated microglia 31 5. Lonchocarpine did not suppress phosphorylation of MAP kinases in LPS-induced microglial cells 32 6. Lonchocarpine suppressed LPS-induced expression of TLR4 and interaction of MyD88 and IRAK4 in microglial cells 37 7. Neuronal cell viability was recovered by treatment of lonchocarpine in microglia-neuronal cell coculture system 41 8. Lonchocarpine did not suppress the expression of cytokines in LPS-induced astrocytes 41 B. Anti-inflammatory mechanism of lonchocarpine in TLR3 signaling-induced neuroinflammation 45 1. Lonchocarpine suppressed iNOS and pro-inflammatory mediators in poly(I:C)-stimulated microglia 45 2. Lonchocarpine suppressed NF-κB signaling pathway in poly(I:C)-stimulated microglia 45 3. Lonchocarpine inhibited microglial activation and pro-inflammatory cytokine expression in poly(I:C)-induced neuroinflammation mouse model 48 C. Antioxidant mechanism of lonchocarpine in rat primary astrocytes 53 1. Lonchocarpine inhibited ROS production in H2O2-treated primary astrocytes 53 2. Lonchocarpine increased the expression of phase II anti-oxidant enzymes in astrocytes 53 3. Lonchocarpine increased nuclear protein binding to ARE and ARE-mediated transcriptional activities in astrocytes 56 4. Lonchocarpine increased phosphorylation of MAP kinases and AMPK, and treatment of their specific inhibitors suppressed HO-1 expression by modulating Nrf2/ARE signaling 56 IV. DISCUSSION 63 A. Anti-inflammatory mechanism of lonchocarpine in TLR4 signaling induced neuroinflammation 61 B. Anti-inflammatory mechanism of lonchocarpine in TLR3 signaling induced neuroinflammation 67 C. Antioxidant mechanism of lonchocarpine in rat primary astrocytes 70 V. CONCLUSION 72 REFERENCES 74 ABSTRACT (in Korean) 85-
dc.formatapplication/pdf-
dc.format.extent2068401 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc600-
dc.titleAnti-inflammatory mechanism of natural compound lonchocarpine in lipopolysaccharide- or poly(I:C)-induced neuroinflammation-
dc.typeDoctoral Thesis-
dc.format.pagexiii, 87 p.-
dc.description.localremark박097-
dc.contributor.examiner오세관-
dc.contributor.examiner서혜명-
dc.contributor.examiner우소연-
dc.contributor.examiner안영호-
dc.contributor.examiner김희선-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 의과학과-
dc.date.awarded2016. 2-
Appears in Collections:
일반대학원 > 의과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE