View : 109 Download: 0

Multiday evolution of convective bursts during western North Pacific tropical cyclone development and nondevelopment using geostationary satellite measurements

Title
Multiday evolution of convective bursts during western North Pacific tropical cyclone development and nondevelopment using geostationary satellite measurements
Authors
Chang, MinheeHo, Chang-HoiPark, Myung-SookKim, JinwonAhn, Myoung-Hwan
Ewha Authors
안명환
SCOPUS Author ID
안명환scopus
Issue Date
2017
Journal Title
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
ISSN
2169-897XJCR Link2169-8996JCR Link
Citation
vol. 122, no. 3, pp. 1635 - 1649
Publisher
AMER GEOPHYSICAL UNION
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Tropical cyclones (TCs) develop through latent heating from a series of deep convection. To investigate the evolution of diurnal convective burst (CB) activities prior to TC formation, we analyzed 463 tropical disturbances that developed (80) or not developed (383) into TCs over the western North Pacific during the 2007-2009 period. Geostationary satellite data allowed defining deep convection where infrared (IR) brightness temperature is lower than that of water vapor (WV). Diurnal expansions from time series of IR minusWV< 0 areas near disturbance vortex centers for 5 days are defined as CB events. Combined analysis with the Modern Era Retrospective-Analysis shows that the multiday convective-environmental evolution for TC formation is entirely different from nonformation processes in terms of the occurrence of two consecutive diurnal CB events. Multiday CBs (mCB) are observed in 67.5% of the 80 TC formation cases and in 13.8% of the 383 nonformation cases. Intensities of the middle-to-low tropospheric relative vorticity of these two groups are comparable on 4 to 5 days prior to TC formation. However, vorticity intensification is weak for nondeveloping disturbances in environments of strong vertical wind shear; these disturbances eventually decay. The vorticity of developing disturbances continuously intensifies to TC strengths. The remaining 32.5% of the TC cases without mCB show weaker initial vorticity, but rapid intensification over 3 day periods before TC formation. The present results reveal that mCB is a common feature in pre-TC stages, and large-scale environments of weak vertical wind shear are critical for the formation of TC-strength circulations.
DOI
10.1002/2016JD025535
Appears in Collections:
일반대학원 > 대기과학공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE