View : 15 Download: 0

Population pharmacokinetic and pharmacodynamic models of remifentanil in healthy volunteers using artificial neural network analysis

Title
Population pharmacokinetic and pharmacodynamic models of remifentanil in healthy volunteers using artificial neural network analysis
Authors
Kang S.H.Poynton M.R.Kim K.M.Lee H.Kim D.H.Lee S.H.Bae K.S.Linares O.Kern S.E.Noh G.J.
Ewha Authors
이희승
SCOPUS Author ID
이희승scopus
Issue Date
2007
Journal Title
British Journal of Clinical Pharmacology
ISSN
0306-5251JCR Link
Citation
vol. 64, no. 1, pp. 3 - 13
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Aims: An ordinary sigmoid Emax model could not predict overshoot of electroencephalographic approximate entropy (ApEn) during recovery from remifentanil effect in our previous study. The aim of this study was to evaluate the ability of an artificial neural network (ANN) to predict ApEn overshoot and to evaluate the predictive performance of the pharmacokinetic model, and pharmacodynamic models of ANN with respect to data used. Methods: Using a reduced number of ApEn instances (n = 1581) to make NONMEM modelling feasible and complete ApEn data (n = 24 509), the presence of overshoot was assessed. A total of 1077 measured remifentanil concentrations and ApEn data, and a total of 24 509 predicted concentrations and ApEn data were used in the pharmacodynamic model A and B of ANN, respectively. The testing subset of model B (n = 7352) was used to evaluate the ability of ANN to predict overshoot of ApEn. Mean squared error (MSE) was calculated to evaluate the predictive performance of the ANN models. Results: With complete ApEn data, ApEn overshoot was observed in 66.7% of subjects, but only in 37% with a reduced number of ApEn instances. The ANN model B predicted 77.8% of ApEn overshoot. MSE (95% confidence interval) was 57.1 (3.22, 71.03) for the pharmacokinetic model, 0.148 (0.004, 0.007) for model A and 0.0018 (0.0017, 0.0019) for model B. Conclusions: The reduced ApEn instances interfered with the approximation of true electroencephalographic response. ANN predicted 77.8% of ApEn overshoot. The predictive performance of model B was significantly better than that of model A. © 2007 The Authors.
DOI
10.1111/j.1365-2125.2007.02845.x
Appears in Collections:
의학전문대학원 > 의학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE