View : 689 Download: 0

Correlation of 3D FLAIR and dopamine transporter imaging in patients with parkinsonism

Title
Correlation of 3D FLAIR and dopamine transporter imaging in patients with parkinsonism
Authors
Oh S.W.Shin N.-Y.Lee J.J.Lee S.-K.Lee P.H.Lim S.M.Kim J.W.
Ewha Authors
임수미신나영
SCOPUS Author ID
임수미scopus; 신나영scopus
Issue Date
2016
Journal Title
American Journal of Roentgenology
ISSN
0361-803XJCR Link
Citation
American Journal of Roentgenology vol. 207, no. 5, pp. 1089 - 1094
Keywords
3D FLAIRDopamine transporter imagingNigrosome-1Parkinson diseaseParkinsonism
Publisher
American Roentgen Ray Society
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Objective. The purpose of this study is to evaluate direct in vivo visualization of nigrosome-1 in substantia nigra (SN) with 3D FLAIR imaging and its diagnostic value in predicting the intactness of presynaptic dopaminergic function of the nigrostriatal pathway. MATERIALS AND METHODS. Forty-fve patients showing parkinsonism who underwent both 3D FLAIR and dopamine transporter (DAT) imaging were recruited. In total, 90 SNs were reviewed on axial 3D FLAIR images. We regarded oval or linear hyperintensities on the posterolateral side of SN as intact nigrosome-1. Two neuroradiologists independently evaluated the appearance of nigrosome-1, and disagreements were settled by consensus. Kappa values for interrater agreement were calculated. Diagnostic performances of the appearance of nigrosome-1 for predicting presynaptic dopaminergic function on DAT imaging and Parkinson disease (PD) were calculated. RESULTS. The diagnostic performances of a loss of nigrosome-1 on 3D FLAIR images were sensitivity of 85.7%, specifcity of 85.4%, positive predictive value (PPV) of 83.7%, and negative predictive value (NPV) of 87.2% for predicting impaired presynaptic dopaminergic function on DAT imaging, and sensitivity of 94.7%, specifcity of 76.9%, PPV of 85.7%, and NPV of 90.9% for predicting PD. When only oval hyperintensity was considered as intact nigrosome-1, its sensitivity and NPV were increased up to 95.2% and 91.7%, respectively, for predicting impaired presynaptic dopaminergic function on DAT imaging, and both increased to 100% for predicting PD. Interobserver agreement for the appearance of nigrosome-1 on 3D FLAIR images was substantial (κ = 0.625). CONCLUSION. Nigrosome-1 could be visualized on 3D FLAIR images, and its loss can be used to predict presynaptic dopaminergic function and to diagnose PD with high accuracy. © 2016 American Roentgen Ray Society.
DOI
10.2214/AJR.16.16092
Appears in Collections:
의과대학 > 의학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE