View : 729 Download: 551

Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III

Title
Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III
Authors
Noh Y.H.Baek J.Y.Jeong W.Rhee S.G.Chang T.-S.
Ewha Authors
이서구정우진창동신
SCOPUS Author ID
이서구scopus; 정우진scopus; 창동신scopus
Issue Date
2009
Journal Title
Journal of Biological Chemistry
ISSN
0021-9258JCR Link
Citation
Journal of Biological Chemistry vol. 284, no. 13, pp. 8470 - 8477
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
The mitochondria are the major intracellular source of reactive oxygen species (ROS), which are generated during cellular respiration. The role of peroxiredoxin (Prx) III, a 2-Cys Prx family member, in the scavenging of mitochondrial H 2O 2 has recently been emphasized. While eliminating H 2O 2, Prx can become overoxidized and inactivated by modifying the active cysteine into cysteine sulfinic acid (Cys-SO 2H). When 2-Cys Prxs are inactivated in vitro, sulfiredoxin (Srx) reduces the cysteine sulfinic acid to cysteines. However, whereas Srx is localized in the cytoplasm, Prx III is present exclusively in the mitochondria. Although Srx reduces sulfinic Prx III in vitro, it remains unclear whether the reduction of Prx III in cells is actually mediated by Srx. Our gain- and loss-of-function experiments show that Srx is responsible for reducing not only sulfinic cytosolic Prxs (I and II) but also sulfinic mitochondrial Prx III. We further demonstrate that Srx translocates from the cytosol to mitochondria in response to oxidative stress. Overexpression of mitochondrion-targeted Srx promotes the regeneration of sulfinic Prx III and results in cellular resistance to apoptosis, with enhanced elimination of mitochondrial H 2O 2 and decreased rates of mitochondrial membrane potential collapse. These results indicate that Srx plays a crucial role in the reactivation of sulfinic mitochondrial Prx III and that its mitochondrial translocation is critical in maintaining the balance between mitochondrial H 2O 2 production and elimination. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.
DOI
10.1074/jbc.M808981200
Appears in Collections:
일반대학원 > 생명·약학부 > Journal papers
Files in This Item:
8470.full.pdf(477.9 kB) Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE