View : 787 Download: 0

Liposome composition is important for retention of liposomal rhodamine in P-glycoprotein-overexpressing cancer cells Effect of liposomal composition Dong Il Kang et al.

Title
Liposome composition is important for retention of liposomal rhodamine in P-glycoprotein-overexpressing cancer cells Effect of liposomal composition Dong Il Kang et al.
Authors
Kang D.I.Kang H.-K.Gwak H.-S.Han H.-K.Lim S.-J.
Ewha Authors
곽혜선
Issue Date
2009
Journal Title
Drug Delivery
ISSN
1071-7544JCR Link
Citation
Drug Delivery vol. 16, no. 5, pp. 261 - 267
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
Multidrug resistance (MDR) caused by high expression of P-glycoprotein (Pgp) in cancer patients remains one of the major obstacles to successful therapy of cancer. Earlier studies have shown that the incorporation of Pgp-substrate drugs in liposomes may provide a strategy to circumvent Pgp-mediated drug efflux. The present study investigated the impact of liposome composition on the efflux of Pgp-substrate incorporated in liposomes. Liposomes with varying compositions were loaded with rhodamine 123, a fluorescent probe frequently used as a Pgp-substrate, and the retention of rhodamine was compared in two breast cancer cell lines: wild-type cells with no detectable Pgp expression (MCF-7/WT) and Pgp-expressing cells resulting from stable transfection of the MDR1 gene (MCF-7/Pgp). Pgp-expression decreased the rhodamine retention in MCF-7 cells, suggesting that Pgp is functional. Liposome loading increased rhodamine retention in MCF-7/Pgp cells, but not in MCF-7/WT cells. Surface charge of liposomes did not affect the rhodamine retention, whereas the incorporation of cholesterol and polyethyleneglycol-attached lipids was effective in further increasing the rhodamine retention in MCF-7/Pgp cells. Since further study demonstrated that the rate of rhodamine release from liposomes tended to be inversely correlated with rhodamine retention by cells, it seems likely that more rigid liposomes are able to sequester rhodamine more efficiently, thereby inhibiting direct interactions of rhodamine with Pgp proteins. Taken together, these findings suggest that Pgp-mediated MDR in cancer cells may be more effectively modulated by optimizing the composition of liposomes for loading Pgp-substrate anti-cancer drugs. © 2009 Informa UK Ltd.
DOI
10.1080/10717540902937562
Appears in Collections:
약학대학 > 약학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE