View : 23 Download: 0

Low-Band-Gap Polymer-Based Ambipolar Transistors and Inverters Fabricated Using a Flow-Coating Method

Title
Low-Band-Gap Polymer-Based Ambipolar Transistors and Inverters Fabricated Using a Flow-Coating Method
Authors
Kim, Min JePark, Jae HoonKang, BoseokKim, DongjinJung, A-RaYang, JeehyeKang, Moon SungLee, Dong YunCho, KilwonKim, HyunjungKim, BongSooCho, Jeong Ho
Ewha Authors
김봉수
SCOPUS Author ID
김봉수scopus
Issue Date
2016
Journal Title
JOURNAL OF PHYSICAL CHEMISTRY C
ISSN
1932-7447JCR Link
Citation
vol. 120, no. 26, pp. 13865 - 13872
Publisher
AMER CHEMICAL SOC
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
The performances of organic thin film transistors (OTFTs) produced by polymer solution casting are tightly correlated with the morphology and chain-ordering of semiconducting polymer layers, which depends on the processing conditions applied. The slow evaporation of a high boiling point (bp) solvent permits sufficient time for the assembly of polymer chains during the process, resulting in improving the film crystallinity and inducing favorable polymer chain orientations for charge transport. The use of high bp solvents, however, often results in dewetting of thin films formed on hydrophobic surfaces, such as the commonly used octadecyltrichlorosilane (ODTS)-treated SiO2 gate dielectric. Dewetting hampers the formation of uniform and highly crystalline semiconducting active channel layers. In this manuscript, we demonstrated the formation of highly crystalline dithienothienyl diketopyrrolopyrrole (TT-DPP)-based polymer films using a flow-coating method to enable the fabrication of ambipolar transistors and inverters. Importantly, unlike conventional spin-coating methods, the flow-coating method allowed us to use high bp solvents, even on a hydrophobic surface, and minimized the polymer solution waste. The crystalline orientations of the TT-DPP-based polymers were tuned depending on the solvent used (four different bp solvents were tested) and the employment of a thermal annealing step. The use of high bp solvents and thermal annealing of the polymer films significantly enhanced the crystalline microstructures in the flow-coated films, resulting in considerable carrier mobility increase in the OTFTs compared to the spin-coated films. Our simple, inexpensive, and scalable flow-coating method, for the first time employed in printing semiconducting polymers, presents a significant step toward optimizing the electrical performances of organic ambipolar transistors through organic semiconducting layer film crystallinity engineering.
DOI
10.1021/acs.jpcc.6b01371
Appears in Collections:
사범대학 > 과학교육과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE