View : 12 Download: 0

Efficient multiple aggregations of stream data

Title
Efficient multiple aggregations of stream data
Authors
Kim J.Kim M.
Ewha Authors
김명
SCOPUS Author ID
김명scopus
Issue Date
2007
Journal Title
Proceedings - 2nd International Multi-Symposiums on Computer and Computational Sciences, IMSCCS'07
Indexed
SCOPUS scopus
Abstract
Recently there has been a great deal of interests in analyzing stream data that can be seen in applications such as network monitoring, web click stream analysis, and sensor networks. Multiple aggregations are regarded as one of the important operations for the high level analysis of stream data as well as business data. However, existing multiple aggregation algorithms for business data are not adequate for stream data because aggregation should be done on a rapidly flowing unsorted data stream, which requires tremendous amount of time and space. We propose an algorithm for efficiently generating user selected aggregation tables from unsorted data stream. For fast aggregation, we use a combination of arrays and AVL trees as temporary storage of aggregation tables. The proposed algorithm can also be used for the cases where aggregation tables are too large to be stored in main memory during aggregation. We showed by experiments that our algorithm is practical. © 2007 IEEE.
DOI
10.1109/IMSCCS.2007.4392631
ISBN
0769530397; 9780769530390
Appears in Collections:
엘텍공과대학 > 컴퓨터공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE