View : 169 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author조용승-
dc.date.accessioned2016-08-28T11:08:32Z-
dc.date.available2016-08-28T11:08:32Z-
dc.date.issued1996-
dc.identifier.issn0926-2245-
dc.identifier.otherOAK-12485-
dc.identifier.urihttp://dspace.ewha.ac.kr/handle/2015.oak/228624-
dc.description.abstractLet p : E → X be an SU (2)-bundle over a simply connected smooth closed 4-manifold X with Chern number k = nk′. Let the cyclic group ℤn act on X and the bundle p : E → X such that p is a ℤn-map. We compute the dimension of the moduli space of the anti-self-dual connections on the quotient bundle E′ → X′. Relating the ℤn-invariant moduli space and the equivariant Donaldson polynomial invariant on E → X, we study the Donaldson polynomial invariant on the quotient bundle E′ → X′.-
dc.languageEnglish-
dc.titleCyclic group actions on gauge theory-
dc.typeArticle-
dc.relation.issue1-
dc.relation.volume6-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage87-
dc.relation.lastpage99-
dc.relation.journaltitleDifferential Geometry and its Application-
dc.identifier.doi10.1016/0926-2245(96)00009-5-
dc.identifier.scopusid2-s2.0-0030098466-
dc.author.googleCho Y.-S.-
dc.contributor.scopusid조용승(14524281600)-
dc.date.modifydate20180104081001-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE