View : 674 Download: 0

Analysis on the bias of the PM2.5 separator for polydispersed aerosol size distribution

Title
Analysis on the bias of the PM2.5 separator for polydispersed aerosol size distribution
Authors
Jung C.H.Kim Y.P.
Ewha Authors
김용표
SCOPUS Author ID
김용표scopus
Issue Date
2013
Journal Title
Separation and Purification Technology
ISSN
1383-5866JCR Link
Citation
Separation and Purification Technology vol. 104, pp. 167 - 174
Indexed
SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
The ideal cut of an aerosol separator should remove all particles larger than the cut diameter and allow particles less than the cut diameter to penetrate. However, it is impossible to obtain a true cut because generally, the aerosol separator shows a fractional efficiency curve with a slope, and these differences in efficiency lead to structural errors in aerosol separation [15,11,14]. This study adapts the generalized Lapple equation to describe the fractional efficiency of a cyclone and calculated the penetration efficiency through a PM2.5 collector. Sensitivity analysis for penetration error has been conducted between a real separation collector and an ideal collector. This study also derives an analytical approximated solution and shows that the approximated calculations agree very well with numerical results, especially for low geometric standard deviation and large slope parameter. Based on this measurement error calculation, the mass difference ratio of PM2.5 separator between different collectors with different slope parameter (β) and geometric mean diameter was compared. Subsequently, this study shows that conventional separators have different separation (penetration) efficiency even if their cut diameter is the same depending on the slope parameter and particle size distribution, calculates the bias with polydispersed aerosol size distributions with different slope parameter and shows an easy way to estimate the penetration error using analytical approximated solutions. © 2012 Elsevier B.V. All rights reserved.
DOI
10.1016/j.seppur.2012.10.048
Appears in Collections:
공과대학 > 화공신소재공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE