View : 14 Download: 0

Efficient IMRT inverse planning with a new L1-solver: Template for first-order conic solver

Efficient IMRT inverse planning with a new L1-solver: Template for first-order conic solver
Kim H.Suh T.-S.Lee R.Xing L.Li R.
Ewha Authors
Issue Date
Journal Title
Physics in Medicine and Biology
0031-9155JCR Link
vol. 57, no. 13, pp. 4139 - 4153
Intensity modulated radiation therapy (IMRT) inverse planning using total-variation (TV) regularization has been proposed to reduce the complexity of fluence maps and facilitate dose delivery. Conventionally, the optimization problem with L-1 norm is solved with quadratic programming (QP), which is time consuming and memory expensive due to the second-order Newton update. This study proposes to use a new algorithm, template for first-order conic solver (TFOCS), for fast and memory-efficient optimization in IMRT inverse planning. The TFOCS utilizes dual-variable updates and first-order approaches for TV minimization without the need to compute and store the enlarged Hessian matrix required for Newton update in the QP technique. To evaluate the effectiveness and efficiency of the proposed method, two clinical cases were used for IMRT inverse planning: a head and neck case and a prostate case. For comparison, the conventional QP-based method for the TV form was adopted to solve the fluence map optimization problem in the above two cases. The convergence criteria and algorithm parameters were selected to achieve similar dose conformity for a fair comparison between the two methods. Compared with conventional QP-based approach, the proposed TFOCS-based method shows a remarkable improvement in computational efficiency for fluence map optimization, while maintaining the conformal dose distribution. Compared with QP-based algorithms, the computational speed using TFOCS for fluence optimization is increased by a factor of 4 to 6, and at the same time the memory requirement is reduced by a factor of 3 to 4. Therefore, TFOCS provides an effective, fast and memory-efficient method for IMRT inverse planning. The unique features of the approach should be particularly important in inverse planning involving a large number of beams, such as in VMAT and dense angularly sampled and sparse intensity modulated radiation therapy (DASSIM-RT). © 2012 Institute of Physics and Engineering in Medicine.
Appears in Collections:
의과대학 > 의학과 > Journal papers
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.