View : 141 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author고응일-
dc.date.accessioned2016-08-28T12:08:53Z-
dc.date.available2016-08-28T12:08:53Z-
dc.date.issued2011-
dc.identifier.issn0022-247X-
dc.identifier.otherOAK-7057-
dc.identifier.urihttp://dspace.ewha.ac.kr/handle/2015.oak/221171-
dc.description.abstractThis paper is a continuation of the study by Foias, Jung, Ko, and Pearcy (2007) [4] and Foias, Jung, Ko, and Pearcy (2008) [5] of rank-one perturbations of diagonalizable normal operators. In Foias, Jung, Ko, and Pearcy (2007) [4] we showed that there is a large class of such operators each of which has a nontrivial hyperinvariant subspace, and in Foias, Jung, Ko, and Pearcy (2008) [5] we proved that the commutant of each of these rank-one perturbations is abelian. In this paper we show that the operators considered in Foias, Jung, Ko, and Pearcy (2007) [4] have more structure - namely, that they are decomposable operators in the sense of Colojoarǎ and Foias (1968) [1]. © 2010 Elsevier Inc.-
dc.languageEnglish-
dc.titleSpectral decomposability of rank-one perturbations of normal operators-
dc.typeArticle-
dc.relation.issue2-
dc.relation.volume375-
dc.relation.indexSCIE-
dc.relation.indexSCOPUS-
dc.relation.startpage602-
dc.relation.lastpage609-
dc.relation.journaltitleJournal of Mathematical Analysis and Applications-
dc.identifier.doi10.1016/j.jmaa.2010.09.037-
dc.identifier.wosidWOS:000284343200022-
dc.identifier.scopusid2-s2.0-78149407572-
dc.author.googleFoias C.-
dc.author.googleJung I.B.-
dc.author.googleKo E.-
dc.author.googlePearcy C.-
dc.contributor.scopusid고응일(7005763297)-
dc.date.modifydate20170601133704-
Appears in Collections:
자연과학대학 > 수학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE