View : 705 Download: 190

Diversity of innate immune recognition mechanism for bacterial polymeric meso-diaminopimelic acid-type peptidoglycan in insects

Title
Diversity of innate immune recognition mechanism for bacterial polymeric meso-diaminopimelic acid-type peptidoglycan in insects
Authors
Yu Y.Park J.-W.Kwon H.-M.Hwang H.-O.Jang I.-H.Masuda A.Kurokawa K.Nakayama H.Lee W.-J.Dohmae N.Zhang J.Lee B.L.
Ewha Authors
이원재
SCOPUS Author ID
이원재scopus
Issue Date
2010
Journal Title
Journal of Biological Chemistry
ISSN
0021-9258JCR Link
Citation
Journal of Biological Chemistry vol. 285, no. 43, pp. 32937 - 32945
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
In Drosophila, the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathway. The Toll signaling pathway responds mainly to the lysine-type peptidoglycan of Gram-positive bacteria and fungal β-1,3-glucan, whereas the Imd pathway responds to the meso-diaminopimelic acid (DAP)-type peptidoglycan of Gram-negative bacteria and certain Gram-positive bacilli. Recently we determined the activation mechanism of a Toll signaling pathway biochemically using a large beetle, Tenebrio molitor. However, DAP-type peptidoglycan recognition mechanism and its signaling pathway are still unclear in the fly and beetle. Here, we show that polymeric DAP-type peptidoglycan, but not its monomeric form, formed a complex with Tenebrio peptidoglycan recognition protein-SA, and this complex activated the three-step proteolytic cascade to produce processed Spätzle, a Toll receptor ligand, and induced Drosophila defensin-like antimicrobial peptide in Tenebrio larvae similarly to polymeric lysine-type peptidoglycan. Monomeric DAP-type peptidoglycan induced Drosophila diptericin-like antimicrobial peptide in Tenebrio hemocytes. In addition, both polymeric and monomeric DAP-type peptidoglycans induced expression of Tenebrio peptidoglycan recognition protein-SC2, which is DAP-type peptidoglycan-selective N-acetylmuramyl-L-alanine amidase that functions as a DAP-type peptidoglycan scavenger, appearing to function as a negative regulator of the DAP-type peptidoglycan signaling by cleaving DAP-type peptidoglycan in Tenebrio larvae. Taken together, these results demonstrate that molecular recognition mechanism for polymeric DAP-type peptidoglycan is different between Tenebrio larvae and Drosophila adults, providing biochemical evidences of biological diversity of innate immune responses in insects. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
DOI
10.1074/jbc.M110.144014
Appears in Collections:
일반대학원 > 바이오융합과학과 > Journal papers
Files in This Item:
Diversity of innate immune recognition mechanism for bacterial polymeric meso-diaminopimelic acid-type peptidoglycan in insects.pdf(2.64 MB) Download
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE