View : 564 Download: 0

Structure and photoinduced electron transfer dynamics of a series of hydrogen-bonded supramolecular complexes composed of electron donors and a saddle-distorted diprotonated porphyrin

Title
Structure and photoinduced electron transfer dynamics of a series of hydrogen-bonded supramolecular complexes composed of electron donors and a saddle-distorted diprotonated porphyrin
Authors
Honda T.Nakanishi T.Ohkubo K.Kojima T.Fukuzumi S.
Ewha Authors
Shunichi Fukuzumi
SCOPUS Author ID
Shunichi Fukuzumiscopusscopus
Issue Date
2010
Journal Title
Journal of the American Chemical Society
ISSN
0002-7863JCR Link
Citation
Journal of the American Chemical Society vol. 132, no. 29, pp. 10155 - 10163
Indexed
SCI; SCIE; SCOPUS WOS scopus
Document Type
Article
Abstract
The excited-state photodynamics of intrasupramolecular photoinduced electron transfer was investigated in a series of hydrogen-bonded supramolecular complexes composed of diprotonated 2,3,5,7,8,10,12,13,15,17,18,20- dodecaphenylporphyrin (H 4DPP 2+) and electron donors bearing a carboxylate group. The formation of supramolecular complexes was examined by spectroscopic measurements. The binding constants obtained by spectroscopic titration indicate the strong binding (10 8-10 10 M -2) even in a polar and coordinating solvent, benzonitrile (PhCN). The crystal structure of the supramolecular assembly using ferrocenecarboxylate (FcCOO -) was determined to reveal a new structural motif involving two-point and single-point hydrogen bonding among saddle-distorted H 4DPP 2+ dication and two FcCOO - anions. Femtosecond laser flash photolysis was applied to investigate the photodynamics in the hydrogen-bonded supramolecular complexes. Rate constants obtained were evaluated in light of the Marcus theory of electron transfer, allowing us to determine the reorganization energy and the electronic coupling matrix constant of photoinduced electron transfer and back electron transfer to be 0.68 eV and 43 cm -1, respectively. The distance dependence of electron transfer was also examined by using a series of ferrocenecarboxylate derivatives connected by linear phenylene linkers, and the distance dependence of the rate constant of electron transfer (k Et) was determined to be k ET = k 0 exp(-βr), in which β) 0.64 Å -1. © 2010 American Chemical Society.
DOI
10.1021/ja103889f
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE