View : 141 Download: 0

Improved fog detection from satellite in the presence of clouds

Improved fog detection from satellite in the presence of clouds
Yoo J.-M.Jeong M.-J.Hur Y.M.Shin D.-B.
Ewha Authors
Issue Date
Journal Title
Asia-Pacific Journal of Atmospheric Sciences
1976-7633JCR Link
Asia-Pacific Journal of Atmospheric Sciences vol. 46, no. 1, pp. 29 - 40
Document Type
This study analyzes radiative effect of the higher clouds over the fog layer and presents the improvement of fog detection over the Korean peninsula, utilizing satellite data of the Multi-functional Transport SATellite (MTSAT)-IR and the MODerate resolution Imaging Spectroradiometer (MODIS) and the Look-Up Table (LUT) based on Radiative Transfer Model (RTM) simulations. Fog detection utilizing the satellite data from visible (0.68 μm) and infrared (3.75 μm and 10.8 μm) channels has been evaluated in comparison with groundbased observations over 52 meteorological stations in the Korean Peninsula from March 2006 to February 2007. The threshold values for fog sensing have been derived from the difference (i.e., T3.7-11) in brightness temperature between 3.75 μm (T3.7) and 10.8 μm (T11) during day and night, and also from the reflectivity at 0.68 μm (R0.68) in the daytime. In the twilight, however, the difference between the temperature values at 10.8 μm and their maximum within previous 15 days (i.e., T IImax-II) are used instead, because the 3.75 μm channel is inaccurate for the fog detection at dawn/dusk. The sensitivity of the T 3.7-11 values with respect to the clouds is investigated based on the cloud variables such as its height, optical thickness, and amount. The values of T3.7-11 are the most sensitive to cloud height, followed by cloud optical thickness and effective radius, while R0.68 is insensitive to cloud height. The sensitivity is examined with various conditions of cloud phases and day/night. Sixteen cases among eighteen fog occurrences, which have been unable to be sensed by using only the conventional threshold values, are successfully detected with the additional LUT corrections, indicating a significant improvement. The method of fog detection in this study can be useful to the Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Data Processing System (CMDPS) by reducing the cloud effect on fog sensing. © The Korean Meteorological Society and Springer 2010.
Appears in Collections:
사범대학 > 과학교육과 > Journal papers
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.