View : 15 Download: 0

Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions

Title
Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions
Authors
Fukuzumi S.Kotani H.Lee Y.-M.Nam W.
Ewha Authors
남원우Shunichi Fukuzumi이용민
SCOPUS Author ID
남원우scopus; Shunichi Fukuzumiscopus; 이용민scopusscopus
Issue Date
2008
Journal Title
Journal of the American Chemical Society
ISSN
0002-7863JCR Link
Citation
vol. 130, no. 45, pp. 15134 - 15142
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Hydride transfer from dihydronicotinamide adenine dinucleotide (NADH) analogues, such as 10-methyl-9,10-dihydroacridine (AcrH2) and its derivatives, 1-benzyl-1,4-dihydronicotinamide (BNAH), and their deuterated compounds, to non-heme oxoiron(IV) complexes such as [(L)FeIV(O)] 2+ (L = N4Py, Bn-TPEN, and TMC) occurs to yield the corresponding NAD+ analogues and non-heme iron(II) complexes in acetonitrile. Hydride transfer from the NADH analogues to p-chloranil (Cl4Q) also occurs to produce the corresponding NAD+ analogues and the hydroquinone anion (Cl4QH-). The logarithms of the observed second-order rate constants (log kH) of hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes are linearly correlated with those of hydride transfer from the same series of NADH analogues to Cl 4Q, including similar kinetic deuterium isotope effects. The log kH values of hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes are also linearly correlated with those of deprotonation of the radical cations of NADH analogues. Such linear correlations indicate that overall hydride-transfer reactions of NADH analogues to both non-heme oxoiron(IV) complexes and Cl4Q occur via electron transfer from NADH analogues to the oxoiron(IV) complexes, followed by rate-limiting deprotonation from the radical cations of NADH analogues and subsequent rapid electron transfer from the deprotonated radicals to the Fe(III) complexes to yield the corresponding NAD+ analogues and the Fe(II) complexes. The electron-transfer pathway was accelerated by the presence of perchloric acid, and the resulting radical cations of NADH analogues were detected by electron spin resonance spectroscopy and UV-vis spectrophotometry in the acid-promoted hydride-transfer reactions from NADH analogues to non-heme oxoiron(IV) complexes. This result provides the first direct evidence that a hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes proceeds via an electron-transfer pathway. © 2008 American Chemical Society.
DOI
10.1021/ja804969k
Appears in Collections:
자연과학대학 > 화학·나노과학전공 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE