View : 59 Download: 0

Glucose/oxygen deprivation induces the alteration of synapsin I and phosphosynapsin

Title
Glucose/oxygen deprivation induces the alteration of synapsin I and phosphosynapsin
Authors
Jung Y.J.Park S.J.Park J.S.Lee K.E.
Ewha Authors
이경은정연주
SCOPUS Author ID
이경은scopus; 정연주scopus
Issue Date
2004
Journal Title
Brain Research
ISSN
0006-8993JCR Link
Citation
vol. 996, no. 1, pp. 47 - 54
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Synapsin I is believed to be involved in regulating neurotransmitter release and in synapse formation. Its interactions with the actin filaments and synaptic vesicles are regulated by phosphorylation. Because exocytosis and synapsin I phosphorylation are a Ca2+-dependent process, it is possible that an ischemic insult modifies the presynaptic proteins. However, the neuronal damage and the changes in synapsin I as well as its phosphorylation level as a result of glucose/oxygen deprivation (GOD) and reperfusion in organotypic hippocampal slice cultures have not been established. In this study, the level of synapsin I and phosphosynapsin was measured in organotypic hippocampal slice cultures in order to determine the role of synapsin I in the presynaptic nerve terminals during GOD/reperfusion. Propidium iodide fluorescence was observed in the CA1 area after GOD for 30 min, which could be detected in the whole pyramidal cell layer during reperfusion for 24 h. The immunofluorescence of the neuron specific nuclear protein, NeuN, showed a negative correlation with the PI fluorescence. During GOD/reperfusion, the immunofluorescence of synapsin I increased in the stratum radiatum and the stratum oriens of the CA1 area and the stratum lucidum and the stratum oriens of the CA3 area. The phosphosynapsin level evidently increased in the stratum lucidum of the CA3 area after GOD for 30 min, which was reduced to the control level after reperfusion. These results suggested that the neuronal damage and degenerations were observed as a result of GOD/reperfusion and the increase in synapsin I and its phosphorylation might play a role in modulating the release of neurotransmitters via exocytosis and in the formation of new synapses after brain ischemia. © 2003 Elsevier B.V. All rights reserved.
DOI
10.1016/j.brainres.2003.09.069
Appears in Collections:
의과대학 > 의학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE