View : 107 Download: 0

Application of an artificial neural network for a direct estimation of atmospheric instability from a next-generation imager

Title
Application of an artificial neural network for a direct estimation of atmospheric instability from a next-generation imager
Authors
Lee, Su JeongAhn, Myoung-HwanLee, Yeonjin
Ewha Authors
안명환
SCOPUS Author ID
안명환scopus
Issue Date
2016
Journal Title
ADVANCES IN ATMOSPHERIC SCIENCES
ISSN
0256-1530JCR Link1861-9533JCR Link
Citation
vol. 33, no. 2, pp. 221 - 232
Keywords
CAPEartificial neural networkinstabilitygeostationary imager
Publisher
SCIENCE PRESS
Indexed
SCI; SCIE; SCOPUS WOS scopus
Abstract
Atmospheric instability information derived from satellites plays an important role in short-term weather forecasting, especially the forecasting of severe convective storms. For the next generation of weather satellites for Korea's multi-purpose geostationary satellite program, a new imaging instrument has been developed. Although this imaging instrument is not designed to perform full sounding missions and its capability is limited, its multi-spectral infrared channels provide information on vertical sounding. To take full advantage of the observation data from the much improved spatiotemporal resolution of the imager, the feasibility of an artificial neural network approach for the derivation of the atmospheric instability is investigated. The multi-layer perceptron model with a feed-forward and back-propagation training algorithm shows quite a sensitive response to the selection of the training dataset and model architecture. Through an extensive performance test with a carefully selected training dataset of 7197 independent profiles, the model architectures are selected to be 12, 5000, and 0.3 for the number of hidden nodes, number of epochs, and learning rate, respectively. The selected model gives a mean absolute error, RMSE, and correlation coefficient of 330 J kg(-1), 420 J kg(-1), and 0.9, respectively. The feasibility is further demonstrated via application of the model to real observation data from a similar instrument that has comparable observation channels with the planned imager.
DOI
10.1007/s00376-015-5084-9
Appears in Collections:
일반대학원 > 대기과학공학과 > Journal papers
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE