View : 157 Download: 0

Value at risk forecasting for volatility index

Title
Value at risk forecasting for volatility index
Authors
박슬기
Issue Date
2016
Department/Major
대학원 통계학과
Publisher
이화여자대학교 대학원
Degree
Master
Advisors
신동완
Abstract
최근 변동성 지수인 VIX와 연동된 다양한 금융상품이 등장하며, VIX의 예측과 이것의 변동성을 예측하는 것의 중요성이 증가하고 있다. 따라서 본 논문에서는 VIX의 예측치를 구하고, 이것의 표준편차를 구하여 VIX의 VaR을 계산한다. 이를 위해 변동성 지수의 특징인 장기 기억성, 비대칭성, 헤비 테일과 조건부 이분산성을 고려한다. 정규 분포, 표준화된 t분포, skewed t분포를 가정한 모형 중에서 skewed t분포를 따른다고 가정한 모형이 가장 VaR예측에 타당하다는 것을 out of sample test로 확인하였다.;Forecasts of value at risk (VaR) are made for volatility indices such as the VIX for the US S&P 500 index, the VKOSPI for the KOSPI (Korea Stock Price Index), and the OVX (oil volatility index) for crude oil funds, which is the first in the literature. In the forecasts, dominant features of the volatility indices are addressed: long memory, conditional heteroscedasticity, asymmetry, and fat-tails. Out-of-sample validations of the VaR forecasts are made in terms of out-of-sample violation probabilities, showing reasonal performances of the proposed method. The validation shows that asymmetric skew t distributions for errors give us better performance than symmetric normal or t distributions.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 통계학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE