View : 198 Download: 0

Interface Effects on Magnetoelectroluminescence of Organic Light Emitting Devices

Title
Interface Effects on Magnetoelectroluminescence of Organic Light Emitting Devices
Authors
이년종
Issue Date
2015
Department/Major
대학원 물리학과
Publisher
이화여자대학교 대학원
Degree
Doctor
Advisors
김태희
Abstract
최근, 유가물스핀트로닉스(organic spintronics) 분야에서는 유기발광소자(organic light emitting devices, OLEDs)의 전극으로 강자성 금속을 사용함으로써 전계발광 (electroluminescence, EL)을 변조하는 연구가 활발히 이루어지고 있다. 스핀유기발광소자(spin-OLED)라고 불리는 이 소자에서는 외부자기장(H)을 가할 때, 두 전극의 상대적 자화도에 따라 큰 자기전계발광(magnetoelectroluminescence, MEL)의 관측이 예견된다. 이는 강자성 전극을 이용하여 유기물 내부에 스핀편극된 전하를 주입하면, 형광발광(fluorescence)에 기여하는 singlet 상태를 갖는 여기자(exciton) 밀도의 조율이 가능하기 때문이다. 하지만 이종물질접합에서의 전도도 불일치(conductivity mismatch)로 인해, 금속 전극에서 유기물 반도체로 스핀 정보를 유지한 전하를 주입이 어렵다는 점과 유기물 내에서 초미세 상호 작용(hyperfine interaction) 혹은 스핀궤도결합(spin-orbit coupling)으로 인해 스핀정보를 잃을 수 있다는 점이 해결해야 할 과제로 남아있다. 이러한 원인들로 강자성 전극에서 주입된 스핀편극된 전하에 의해 향상된 자기전계발광 관측 및 그 메커니즘의 이해에 대한 보고가 아직 미미한 상태이다. 본 연구에서는 스핀 편극률이 100%에 가까운 에피탁시한 Fe(001)\MgO(001) 스핀 필터(spin filter)를 OLED 소자의 양극으로 사용하여, 자기전계발광을 향상시키고 그 메커니즘을 이해하고자 하였다. 유기반도체소자에서, 전하의 주입 및 수송은 계면의 전자구조에 의존한다. 따라서 스핀 유기발광소자에서의 자기장 의존성 살펴보기에 앞서 금속/유기 이종박막의 계면특성연구를 수행하였다. XRD, AFM, HR-TEM기법을 이용하여 계면의 구조분석을 수행하였으며, UPS실험을 통해 계면에서의 에너지 레벨의 변화를 관찰하였고, XPS실험으로 화학적인 계면특성을 살펴보았다. Si(001)\MgO(001)\Fe(001)\MgO(001)\Cu-Phthalocyanine (CuPc)\N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine (α-NPD)\tris(8-hydroxyquinolinato)aluminium (Alq3)\LiF\Al 구조를 갖는 전면유기발광소자를 제작하여, 상온에서 6%의 MEL (H = 0.1 T)을 관측하였다. 이는 MgO(001)와 같은 인위적으로 배향시킨 산화층이 아닌 자연적으로 형성된 비정질의 산화막을 갖는 다른 강자성 물질(다결정 Py, Fe, 단결정 Fe(001))을 양극으로 사용한 경우(MEL < 3%)와 비자성 양극을 (Al, ITO, Au)을 이용한 경우(MEL ~ 0%)에 비하여 현저히 향상된 결과이다. 전계발광은 캐리어 주입효율(injection efficiency of the carriers), 캐리어 밀도(carrier density), 캐리어 이동도(carrier mobility), 내부양자효율(internal quantum efficiency)에 의존한다. 따라서 자기전계발광이란, 앞의 네가지 요인의 자기장 의존성에 의한 결과라고 볼 수 있다. 에피탁시한 Fe(001)\MgO(001) 양극을 사용한 경우, 향상된 자기전계발광의 원인에 대해 수치적인 분석을 통해 살펴보았다. Houli의 시뮬레이션 모델인 “MOLED” 통해 양극에 따른 전하의 분포 및 전계의 분포 등을 시뮬레이션 해봄으로써 단결정 Fe(001) 양극과 CuPc 홀주입층 사이에 삽입한 얇은 MgO(001) 산화막이 유기발광소자의 구동 미치는 영향을 확인하였다. 또한, 일반적인 유기반도체소자 내에서의 자기장 의존성에 대하여 설명하는 대표적인 네 가지 모델들을 적용하여, 향상된 MEL이 스핀 편극된 홀에 의한 영향이라는 것을 확인하였다.;Modulation of electroluminescence (EL) signals in the organic light emitting devices (OLED) with ferromagnetic (FM) electrodes has emerged as a subject of intense research in the organic spintronics field. In applying a magnetic field, the EL intensity is expected to change depending on the magnetization configuration of the FM layers. Despite this, the basic operating principle of the so-called spin-OLED device is suitable to explain the magnetoconductivity than the magnetic field effect on the EL, which has puzzled researchers in trying to understand the non-negligible magnetoelectoluiminescence (MEL) effect observed in OLEDs with nonmagnetic electrodes. In reality, the injected spins will lose some of their polarization due to hyperfine interactions or spin-orbit interactions when moving through the organic semiconductor (OSC) multilayers before they emit light. Moreover, a study of fully polarized injected charges from the FM layers to OSC layers has not been reported. Several mechanisms have been suggested to explain the MEL in OLEDs, but remain under debate. This paper reports the remarkable enhancement of the magnetic field effect on EL in OLEDs consisting of a non-magnetic Al and a magnetic electrode, such as BCC-Fe(001)\MgO(001), which is as well-known perfect spin filter and almost perfect spin polarization (~ 100 %). For the Si(001)\MgO(001)\Fe(001)\MgO(001)\Cu-Phthalocyanine (CuPc)\N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-2,2'-dimethylbenzidine(α-NPD)\tris(8-hydroxyquinolinato)aluminium (Alq3)\LiF\Al structure, the MEL of ~ 6% was observed at RT in a low magnetic field of 0.1 T for an applied voltage in excess of ~ 5 volts, whereas these measurements revealed less than 3% for the not fully spin polarized FM anodes (Py, Fe(001) and poly-Fe) without a thin MgO(001) overlayer and almost 0 % for non-magnetic anodes, such as ITO, Al and Au. The performance of these devices was improved by introducing a thin MgO(001) layer between the FM anode and CuPc OSC layer. According to a model inspired from one Houli, the device performance including the current, the recombination, the charge density distributions, the electric field distribution, the current-voltage characteristics, and the carrier mobility was analyzed systematically in the hybrid OLED stacks. Given these results, the enhanced MEL can be attributed to the spin-polarized hole injection from the epitaxial Fe(001)\MgO(001) bilayer. The aim of this thesis was to discover and emphasize the importance of the interface and spin polarization of charge carriers for governing the MEL, and suggest a new hybrid device structure for developing highly efficient spin-OLED devices in the near future. For OSC devices, charge injection and charge transport have a strong dependence on the electronic properties at the interfaces. Prior to investigating the magnetic field effects of spin-OLED devices (see Chapter II and III), systematic characterizations of the interface properties of the hybrid multilayers were performed by structural analysis techniques, such as X-ray diffraction, atomic force microscopy, and high resolution transmission electron microscopy. In addition, the energy levels of the hybrid multilayers were determined by ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy, which are given in detail in Chapter I.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 물리학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE