View : 182 Download: 0

Numerical study on the Lagrangian-DNN relaxation of quadratic optimization problem with sparsity exploitation

Title
Numerical study on the Lagrangian-DNN relaxation of quadratic optimization problem with sparsity exploitation
Authors
박지혜
Issue Date
2014
Department/Major
대학원 수학과
Publisher
이화여자대학교 대학원
Degree
Master
Advisors
김선영
Abstract
We study quadratic optimization problems (QOPs) with linear, binary and complementarity constraints. Recently, conic relaxations of these problems, in particular, completely positive cone relaxation, have been interests of many researchers. In this thesis, we discuss Lagrangian-doubly nonnegative (DNN) relaxation with a lagrangian multiplier λ obtained from the DNN relaxation of the QOP. For a su ciently large λ, we can nd the optimal values of the QOPs as shown in the recent paper by Arima, Kim and Kojima in [9]. To increase numerical effciency, we introduce numerical methods for exploiting sparsity using chordal graph and concept of clique. Computational effciency of these methods is illustrated with numerical experiments on the binary QOPs using SparseCoLO and SeDuMi.;이 논문은 특정 부류의 2차 최적화 문제를 다루었다. 최근, 이런 문제들에 대한 다양한 완화 방법이 활발이 연구되고 있는 가운데, 우리는 DNN 완화 방법에서 라그랑지안(largrangian) 상수 λ를 추가함으로써 largrangian-DNN 완화 방법을 중점적으로 연구하였다. λ가 커질수록, 수치적 근사값이 해로 수렴하는 것을 알 수 있었다. 수치적 효율성을 증가시키기 위해서, 우리는 chordal 그래프와 clique을 이용해 sparsity를 추출해 내는 방법을 소개하였다. 또한 이 방법의 효율성을 증명하기 위해서 SparseCoLO 와 SeDuMi를 이용해 문제를 푸는 데 걸리는 시간을 비교하였다.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE