View : 645 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author김여운-
dc.creator김여운-
dc.date.accessioned2016-08-26T11:08:58Z-
dc.date.available2016-08-26T11:08:58Z-
dc.date.issued2008-
dc.identifier.otherOAK-000000038686-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/201761-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000038686-
dc.description.abstractPART1. 3-((5-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imi-dazol-2-yl)methyl)benzamide (IN-1130)은 새로운 ALK5 저해제로 실험동물 모델에서 신섬유화 및 간섬유화를 억제하고, 유방암 전이를 억제함이 보고된 바 있다. 이전 연구에서 설치류와 개, 원숭이를 이용한 약물속도론적 연구에서 빠른 흡수와 소실이 보고되었다. 이에 본 연구에서는 설치류를 이용하여 IN-1130과 그 대사체의 조직분포를 관찰하였다. IN-1130은 경구투여 후 쥐와 생쥐 체내에 빠르게 흡수되었으며 간, 신장, 폐로 빠르게 분포하였다. 그 주 대사체인 M1도 혈액, 간, 신장, 폐에서 모두 분포하였으며 IN-1130과 M1 모두 간에서 농도가 가장 높았다. Microsome 및 supersome 실험계에서 cytochrome P450 (CYP) 및 flavin-containing monooxygenase (FMO) 저해제를 이용하여 IN-1130의 대사연구를 실행하였다. 생쥐, 쥐, 개, 원숭이, 사람의 간 microsome에서 5 개의 대사체 (M1-M5)가 생성되었으며, 이들 대사체의 생성은 CYP 특이적 저해제인 SKF-525A와 ketoconazole 처치에 의해 유의하게 감소하였다. IN-1130 소실 속도는 원숭이 간 microsome에서 가장 빨랐고, 생쥐, 쥐, 사람, 개의 순으로 감소하였다. 사람 CYP supersome을 이용하여 대사실험을 진행하였을 때, 4개의 isozyme, 즉 CYP3A4과 CYP2C8, CYP2D6, CYP2C19이 IN-1130의 대사에 관여하였다. 사람 FMO는 대사에 관여하지 않음을 알 수 있었으며, 대사 특이성은 이성체 특이적 저해제를 이용한 저해실험에서 확인할 수 있었다. IN-1130 대사체의 구조를 알아보기 위하여 MS/MS, NMR분석을 실시한 결과 주대사체인 M1의 구조가 3-((4-(3-hydroxyquinoxaline-6-yl)-5-(6-methylpyridine-2-yl)-1H-imidazol -2-yl)methyl)benzamide 및 3-((4-(2-hydroxyquinoxalin-6-yl)-5-(6-methylpyridine-2-yl)-1H-imidazol-2-yl)methyl)benzamide로 확인되었다. IN-1130의 back-up 화합물 중 하나인 IN-1233에 대해서도 생쥐 내 조직분포를 시험한 결과, IN-1233 역시 빠르게 생쥐 체내로 흡수되어 혈중, 간, 폐, 신장으로 분포하였으며, 간에서의 농도는 동일시간 대 IN-1130의 농도보다 더 높았다. 사람 대사효소를 발현하는 supersome들을 이용하여 대사실험을 시행한 결과, 대사효소들에 의한 소실속도는 IN-1130보다 느렸다. IN-1130의 대사에 참여하는 4개의 CYP isozyme, CYP3A4과 CYP2C8, CYP2D6, CYP2C19이 모두 IN-1233의 대사에도 참여함을 알 수 있었다. 결론적으로 IN-1130은 경구용 항섬유증 및 항암전이 약물로 개발 가능한 약물속도론적 성질 및 대사 profile을 나타내었다. PART2. 항암제 paclitaxel에 사용되는 부형제는 Cremophor EL (polyethoxylated castor oil)과 무수에탄올을 1:1로 섞은 것으로, Cremophor EL은 많은 수용성 및 비수용성 약물의 가용화제로 널리 사용되고 있다. 그러나 Cremophor EL 자체의 부작용인 anaphylactic hypersensitivity reaction과 peripheral neurotoxicity와 같은 심각한 부작용 때문에 난용성인 paclitaxel의 가용화제 연구가 광범위하게 진행되고 있다. Aceporol 330은 새로 개발된 paclitaxel 가용화제로 Cremophor EL에 비해 높은 paclitaxel 용해도와 용량의존적 체내약물 동태가 보고되었다. 이에 본 실험에서는 생쥐와 개를 이용하여 Aceporol 330의 단회투여 독성시험과 2주 반복투여 독성시험을 실시하였다. 생쥐를 이용한 단회투여 독성시험에서, Aceporol 330의 LD50는 최대정맥투여가능 용량인 4 ml/kg 이상으로 판단되었다. 그러나 웅성 생쥐에서 Cremophor EL의 LD50는 4 ml/kg으로 관찰되었다. 개를 이용한 2주 반복투여 독성시험에서 Cremophor EL과 Aceporol 330을 투여한 모든 그룹에서 심각한 구토와 발열, 발적, 점액을 포함한 심한 설사가 관찰되었는데 그 정도는 Cremophor EL 투여 그룹에서 더 심각하였다. 개의 2주 반복투여 독성시험에서 혈액생화학적 검사 결과, Cremophor EL과 Aceporol 330 투여군 모두 무처치 대조군에 비하여 total cholesterol (TCHO)와 triglyceride (TG)의 증가가 관찰되었다. 낮은 치사량과 독성에 근거하여 볼 때, Aceporol 330은 Cremophor EL보다 더 안전한 paclitaxel 가용화제로 개발이 가능할 것으로 사료된다.;PART 1. A new ALK5 inhibitor, 3-((5-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imidazol-2-yl) methyl) benzamide (IN-1130) was developed, which is known to suppress renal/hepatic fibrosis and metastasis of breast cancer in animal models. In this study, the distribution and metabolism of IN-1130 was investigated. After oral administration of IN-1130 to rodents, IN-1130 was rapidly absorbed to reach a peak plasma concentration at 15 min. IN-1130 was distributed into plasma, liver, kidneys and lungs, and the highest levels of IN-1130 and its major metabolite M1 were detected in liver. The cytochrome P450 (CYP) isozymes responsible for metabolism of IN-1130 were identified in liver microsomes of rat, mouse, dog, monkey and human as well as in human CYP supersomesTM. The disappearance rate of IN-1130 in liver microsomes was greatest in monkey, followed by mouse, rat, human, and dog in decreasing order. Five distinct metabolites (M1-M5) were identified in microsomes and their productions were significantly inhibited by CYP inhibitors such as SKF-525A and ketoconazole. Among nine human CYP supersomesTM examined, CYP3A4, CYP2C8, CYP2D6, and CYP2C19 were found to be involved in the metabolism of IN-1130. Also, the production of metabolites via CYP3A4, CYP2C8, CYP2D6, and CYP2C19 was significantly inhibited by the isozyme-specific inhibitors. IN-1130 disappeared fastest in CYP2C8 supersomesTM. SupersomesTM expressing human FMO cDNAs, such as FMO1, FMO3, and FMO5, did not produce any metabolites. A major metabolite of IN-1130 (M1) was detected in the systemic circulation of rat and mouse. It was purified and tentatively identified as 3-((4-(3-hydroxyquinoxaline-6-yl)-5-(6-methylpyridine-2-yl)-1H-imidazol-2-yl)methyl)benza-mide or 3-((4-(2-hydroxyquinoxalin-6-yl)-5-(6-methylpyridine-2-yl)-1H-imidazol-2-yl) methyl)benzamide by LC-MS/MS and 1H-NMR. IN-1233, one of the back-up compounds of IN-1130, was also investigated with regard to tissue distribution in mice and metabolism by human CYP or FMO supersomesTM. IN-1233 also showed rapid absorption and distribution into plasma, liver, kidney and lung. Rates of IN-1233 metabolism by supersomesTM were slower than those of IN-1130. Four CYP isozymes including CYP3A4, CYP2C8, CYP2D6 and CYP2C19 were also determined to be responsible for the metabolism of IN-1233. In conclusion, this study shows that IN-1130 exhibits the promising pharmacokinetics and metabolism as an effective oral therapeutic drug. PART 2. In order to develop an improved paclitaxel formulation vehicle, a micelle forming solubilizer, Aceporol 330 was synthesized. It was previously reported that Aceporol 330 provided the linearity of paclitaxel plasma pharmacokinetics. In this study, the single dose toxicity test and 2-week repeated dose toxicity test of Aceporol 330 was performed in mice and beagle dogs after intravenous administration. Single dose and 2-week repeated dose toxicity test of Aceporol 330 showed fever/generalized erythema, severe vomiting, and diarrhea in beagle dogs. However, those toxicities were less severe than those of Cremophor EL. In single dose toxicity test, LD50 of Aceporol 330 in mice was estimated to be greater than maximum applicable dose, 4 ml/kg. However, LD50 of Cremophor EL in male mice was determined to be 4 ml/kg. Blood chemistry analysis of 2-week repeated dose treated beagle dogs with Aceporol 330 showed significant elevation of total cholesterol (TCHO) and triglyceride (TG) compared to that of control group. Cremophor EL also significantly increased total cholesterol (TCHO) and triglyceride (TG) as much as Aceporol 330. Results from this study indicated that Aceporol 330 was less toxic than Cremophor EL. Based on the pharmacokinetic advantages and the low toxicity of Aceporol 330 in single dose and 2-week repeated dose toxicity test, Aceporol 330 has a potential for use as a safer solubilizer for paclitaxel than Cremophor EL.-
dc.description.tableofcontentsPART I = 1 ABSTRACT = 2 I. INTRODUCTION = 4 A. Drug metabolism in drug development = 4 1. Phase I and phase II metabolism = 4 2. Cytochrome P450s in drug metabolism = 5 3. Flavin-containing monooxygenase (FMO) = 6 4. Approaches to identify drug metabolizing enzymes = 6 B. IN-1130 as activin receptor like kinase-5 (ALK5) inhibitor = 8 C. Objectives of this study = 13 II. MATERIALS AND METHODS = 14 A. Materials = 14 B. Animals = 14 C. Tissue distribution study of IN-1130 = 14 D. Tissue distribution study of IN-1233 = 16 E. Isolated rat liver perfusion assay = 16 F. Preparation of microsome = 16 G. In vitro metabolism of IN-1130 and IN-1233 = 17 1. Assay of CYP-mediated metabolism = 17 2. CYP enzyme inhibition assays = 17 3. Assay of flavin-containing monooxygenase (FMO)-mediated metabolism = 17 4. Enzyme digestion of glucuronide and sulfate conjugates = 18 H. HPLC Analysis = 18 I. LC/MS analysis = 18 J. NMR analysis of IN-1130 and its metabolite = 19 K. Statistical analysis = 19 III. RESULTS = 20 A. Tissue distribution of IN-1130 = 20 1. Plasma concentration of IN-1130 following oral administration to mice and rats = 20 2. Tissue distribution of IN-1130 = 24 3. Disposition of metabolite M1 = 30 B. Metabolism of IN-1130 = 33 1. Metabolism of IN-1130 in isolated rat liver perfusion system = 33 2. Metabolism of low concentration of IN-1130 in vitro = 37 3. Role of flavin-containing monooxygenases (FMOs) in metabolism of IN-1130 = 39 4. Role of CYPs in metabolism of IN-1130 = 53 5. Role of phase II metabolizing enzymes in metabolism of IN-1130 = 68 6. Characterization of metabolites of IN-1130 = 71 C. Disposition of IN-1233 = 77 1. Mean tissue and plasma concentration of IN-1233 in mouse = 77 2. Relative peak area of IN-1233 and its metabolites in mouse = 78 3. Identification of specific CYP and FMO enzymes metabolizing IN-1233 = 81 IV. DISCUSSION = 88 REFERENCES = 94 국문요약 = 102 PART II = 104 ABSTRACT = 105 I. INTRODUCTION = 106 II. MATERIALS AND METHODS = 108 A. Materials = 108 B. Animals = 108 C. Single dose toxicity study in mice = 110 D. 2-Week repeated dose toxicity study in mice = 110 E. Single dose toxicity study in beagle dogs = 111 F. 2-Week repeated dose toxicity study in beagle dogs = 111 G. Hematological investigation and blood chemistry analysis = 112 H. Autopsy study = 113 I. Histopathological study = 113 J. Statistical analysis = 113 III. RESULTS = 114 A. Single dose toxicity study in mice = 114 B. 2-Week repeated dose toxicity study in mice = 117 C. Single dose toxicity study in beagle dogs = 123 D. 2-Week repeated dose toxicity study in beagle dogs = 123 IV. DISCUSSION = 133 REFERENCES = 136 국문요약 = 139 감사의글 = 140-
dc.formatapplication/pdf-
dc.format.extent2918578 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleDistribution and Metabolism of New ALK-5 inhibitor, IN-1130 and Toxicity of Novel Paclitaxel Solubilizer, Aceporol 330-
dc.typeDoctoral Thesis-
dc.format.pageix, 140 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 생명·약학부약학전공-
dc.date.awarded2008. 2-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE