View : 462 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author강세영-
dc.creator강세영-
dc.date.accessioned2016-08-26T10:08:09Z-
dc.date.available2016-08-26T10:08:09Z-
dc.date.issued2007-
dc.identifier.otherOAK-000000028150-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/199334-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000028150-
dc.description.abstractWe have developed a new cyclic iminocarbonate preparation process to synthesize syn-amino alcohol from vicinal-syn-diol using various reagents such as phenyl isocyanide, DCC, and ionic liquid. In the introduction, we explained the purpose of developing the cyclic iminocarbonate preparation process. We expected that we could easily synthesize and use syn-amino alcohol known as a poor substitute of the AD process, if we found a more environment, friendly reaction condition without tin. Specific information about this newly developed cyclic iminocarbonate rearrangement(CIR) process is described in the Result and discussion sections. First, synthesized phenyl isocyanide dichloride, one of the doubly activated imino reagent, and then reacted of 1,2-hexanediol. This method is more effective than current methods, which take several steps instead of renewly developed one step process. Next, we studied a stepwise activation strategy, using DCC. DCC mechanism is often used in esterification. After the first diol is activated in phenyl isocyanate, DCC activates the single alcohol again then induces intramolecular cyclization. Using this method, we were able to synyhesize the expected compound in normal conditions, not in a high temperature and high pressure environment. Third, we synthesized cyclic iminocarbonate with atom-economic dehydration strategy using ionic liquid. Synthesis of cyclic iminocarbonate using ionic liquid is distinctive from other methods in that it’s environment-friendly. In order to check the stereochemistry we synthesized (R)-(-)-1,2-heptanediol with these three methods and checked if each product has same stereochemistry. Finally we used vicinal-syn-diols like diisopropyl-Δ-tartrate and (S,S)-(-)-hydrobenzoin as substrates to show that various diols can be used in these reaction condition.;본 논문에서는 vicinal-syn-diol을 출발 물질로 사용하여 syn-amino alcohol을 합성하는 cyclic iminocarbonate preparation process를 phenyl isocyanide dichloride, DCC, ionic liquid와 같은 다양한 reagent를 사용하여 개발하고자 하였다. 서론에서는 cyclic iminocarbonate preparation process를 연구하는 목적을 살펴보았다. 이는 syn-diol에서부터 syn-amino alcohol을 얻을 수 있는 CIR process를 보다 환경친화적인 방법으로 tin을 사용하지 않고 합성할 수 있는 반응조건을 확립할 수 있다면 AD process의 poor substitute로 알려진 syn-amino alcohol을 보다 간편하게 합성하여 유용하게 사용될 수 있을 것으로 기대되었기 때문이다. 따라서 이러한 연구 배경을 토대로 하여 개발된 cyclic iminocarbonate rearrangement(CIR) process에 대한 구체적인 연구 내용을 Result and discussion에 기술하였다. 가장 먼저 doubly activated imino reagent 중 하나인 phenyl isocyanide dichloride를 합성하여 출발물질인 1,2-hexnaediol과 반응시켰다. 이 반응의 경우 여러 단계를 거쳐서 수행하던 기존의 방법과는 달리 단일 step으로 원하는 물질을 얻을 수 있어 효율성을 보다 획기적으로 개선할 수 있었다. 다음으로, DCC를 사용한 stepwise activation strategy에 대해 연구해 보았다. DCC mechanism은 기존의 esterification에서 흔하게 사용되던 방법으로 우선 starting diol을 activation한 다음 생성된 single alcohol을 다시 한 번 DCC가 activation하여 intramolecular cyclization을 유도하는 방법으로, 이 방법을 도입하여 고온/고압 조건이 아닌 normal condition에서도 효과적으로 원하는 물질을 얻어 낼 수 있었다. 또 다른 방법으로, Ionic liquid를 이용한 atom-economic dehydration strategy를 통해 cyclic iminocarbonate를 합성하였다. Ionic liquid를 이용한 cyclic iminocarbonate의 합성은 환경 문제에서 비교적 자유로운 방법으로 원하는 구조를 만들었다는 점에서도 기존의 방법들과는 차별성을 가질 수 있다. 그리고 이 세가지 방법의 stereochemistry를 조사하기 위해 (R)-(-)-1,2-heptanediol을 합성하여 같은 경로로 반응시켜 stepwise reaction의 stereochemistry를 확인했다. 마지막으로 vicinal-syn-diol인 diisopropyl-Δ-tartrate와 (S,S)-(-)-hydrobenzoin을 사용하여 같은 경로로 반응시켜 다양한 diol을 이 반응조건에 사용할 수 있음을 밝혔다.-
dc.description.tableofcontentsⅠ. 서론 Cyclic iminocarbonate rearrangement process = 1 1.1. Stereochemistry: Chirality = 1 1.2. Cyclic iminocarbonate rearrangement(CIR) process의 연구 배경 = 2 1.2.1. Limitations of current methodologies: regiochemistry; syn/anti diversity = 3 1.2.2. Introduction to Cyclic iminocarbonate rearrangement process = 7 Ⅱ. Result and discussion = 12 2.1. Strategies = 12 2.1.1. Reaction with doubly activated reagents = 13 2.1.2. Stepwise activation strategy = 13 2.2. Select of Substrates and Reagents = 14 2.2.1. Use of doubly activated imino-reagents: X=Cl, OR, etc. = 14 2.2.2. Stepwise activation strategy: carbonyl-activation = 15 2.2.3. Atom-economic dehydration strategy = 16 2.2.4. Select substrates = 17 2.3. Synthetic Application of Cyclic iminocarbonate = 18 2.3.1. Synthesis of cyclic iminocarbonate: Tin process = 18 2.3.2. Synthesis of cyclic iminocarbonate: Phenyl isocyanide dichloride = 20 2.3.3. Synthesis of cyclic iminocarbonate: DCC reaction = 25 2.3.4. Synthesis of cyclic iminocarbonate: Use of ionic liquid = 36 2.3.5. Ionic liquid 반응에 영향을 미치는 외부적인 요건 = 51 Ⅲ. 결론 = 58 Ⅳ. Experimental part = 60 4.1. Conversions of diols to N-Ar-substituted oxazolidinones; using tin ketal = 60 4.1.1. Synthesis of Cyclic iminocarbonate from 1,2-hexanediol = 60 4.1.2. Cyclic iminocarbonate rearrangement process = 60 4.2. Conversions of diols to N-Ar-substituted oxazolidinones; using phenyl isocyanide dichloride = 61 4.2.1. Synthesis of N-Ar-Substituted oxazolidinone from 1,2-hexanediol; using phenyl isocyanide dichloride = 61 4.2.2. Synthesis of N-Ar-substituted oxazolidinone from (S,S)-(-)-Hydrobenzoin; using phenyl isocyanide dichloride = 61 4.2.3. Synthesis of phenyl isocyanide dichloride = 62 4.3. Conversions of diols to single alcohols; Reaction with phenyl isocyanate = 62 4.3.1. Synthesis of racemic primary alcohol(15), secondary alcohol(16): from 1,2-hexanediol = 62 4.3.2. Synthesis of enantiopure-1,2-heptanediol from (R)-(-)-glycidyl butyrate = 64 4.3.3. Synthesis of enatiopure primary alcohol(21), secondary alcohol(20) from enantiopure 1,2-heptanediol(19) = 64 4.3.4. Reaction (S,S)-(-)-Hydrobenzoin with phenyl isocyanate = 66 4.3.5. Reaction diisopropyl-△-tartrate with phenyl isocyanate = 66 4.4. Conversions of diols to N-Ar-substituted oxazolidinones; using DCC = 66 4.4.1. Synthesis of N-Ar-substituted oxazolidinone(13); Reaction racemic alcohol with DCC = 67 4.4.2. Synthesis of N-Ar-substituted oxazolidinone(13); Reaction enantiopure alcohol with DCC = 67 4.4.3. Reaction Diisopropyl-△-tartrate with DCC = 68 4.4.4. Reaction (S,S)-(-)-Hydrobenzoin with DCC = 68 4.5. Conversions of diols to N-Ar-Substituted oxazolidinones; Using ionic liquid in microwave oven = 69 4.5.1. Synthesis of N-Ar-Substituted oxazolidinone(13); Reaction racemic alcohol with ionic liquid = 69 4.5.2. Synthesis of N-Ar-Substituted oxazolidinone(13); Reaction enantiopure alcohol with ionic liquid = 70 4.5.3. Synthesis of N-Ar-substituted oxazolidinone(31); Reaction 27 with ionic liquid = 71 4.5.4. Synthesis of N-Ar-substituted oxazolidinone(32); Reaction 28 with ionic liquid = 71 References = 72-
dc.formatapplication/pdf-
dc.format.extent747807 bytes-
dc.languagekor-
dc.publisher이화여자대학교 대학원-
dc.subject.ddc540-
dc.titleCyclic Iminocarbonate Rearrangement Process Under Sn-free Conditions-
dc.typeMaster's Thesis-
dc.creator.othernameGang, Se Young-
dc.format.pageⅶ, 75 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 화학과-
dc.date.awarded2007. 8-
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE