View : 118 Download: 0

NOTES ON SOME POSITIVE SEMIDEFINITE FORMS

Title
NOTES ON SOME POSITIVE SEMIDEFINITE FORMS
Authors
신경희
Issue Date
1983
Department/Major
대학원 수학과
Keywords
SEMIDEFINITE FORM동형다항식수학Zero sets 구조
Publisher
이화여자대학교 대학원
Degree
Master
Advisors
이혜숙
Abstract
Pn,m을 n원 m차 동형 다항식이라 하고(실수공간 ) ∑n,m을 2차식의 합으로 표시될 수 있는 n원 m차 동형다항식이라 하자. 3원6차 동형다항식 M, R과 4원4차 동형다항식을 다음과 같이 정의하였을때: M(x,y,z) = z^(6)+x^(4)y^(2)+x^(2)y^(4)-3x^(2)y^(2)z^(2) R (x,y,z) = x^(2)(x^(2)-z^(2))+y^2(y^(2)-z^(2))^2-(x^2-z^2)(y^2-z^2)(x^2+y^2-z^2) Q (x,y,z,w)= x^2(x-w)^2+y^2(y-w)^2+z^2(z-w)^2+2xyz( x+r+z-2w) 우리는 다음을 보였다. M ∈ P3,6 -∑3,6 R ∈ P3,6 -∑3,6 Q ∈ P4,4 -∑4,4 또한 Zero sets의 구조와, 적당한 항들의 제거로 다항식 M, R의 특성을 알아보고 M, R이 extremal 다항식임을 보였다.;Let P_(n), _(m) be the homogeneous polynomial of real forms F in n variables of degree m (^(″)n-ary m-ics^(″)) which are positive semidefinite, and let ∑_(n), _(m) be the homogeneous polynomial of n-ary m-ics which can be written as sums of squares of polynomials. For two ternary sextics M, R and a quaternary quartic Q defined as following ; M(x, y, z) = Z^(6)+x^(4)y^(2)+x^(2)^y(4)-3x^(2)y^(2)z^(2) R(x, y, z) = x^(2)(x^(2)-z^(2))^(2)+y^(2)(y^(2)-z^(2))^(2)-(x^(2)-z^(2))(y^(2)-z^(2))(x^(2)+y^(2)-z^(2)) Q(x, y, z, w) = x^(2)(x-w)^(2)+y^(2)(y-w)^(2)+z^(2)(z-w)^(2)+2xyz(x+y+z-2w), we show that M ∈ P_(3, 6) - ∑_(3, 6) R ∈ P_(3, 6) - ∑_(3, 6) Q ∈ P_(4, 4) - ∑_(4, 4) Also, it turned out that the forms M and R can be characterized by the structure of their zero sets, and by the absence of certain specific monomial terms, and we show that these are extremal forms.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE