View : 59 Download: 0

미분다양체의 임계점에 관한 연구

Title
미분다양체의 임계점에 관한 연구
Other Titles
(A) Note on Critical point of differentiable manifolds
Authors
김민경
Issue Date
1987
Department/Major
교육대학원 수학교육전공
Keywords
미분다양체임계점수학교육
Publisher
이화여자대학교 교육대학원
Degree
Master
Advisors
홍석호
Abstract
본 논문에서는 다양체상의 미분가능함수 f가 구체적으로 주어졌을 때 임계점을 구하는 새로운 방법을 제시하였다. 미분가능사상 f : |R^(n) → |R^(r) 에 대하여 M= {p∈|R^(n) |f(p) = 0 }이라 하고 r < n이라 하자. M의 각점 p에서 f의 Jacobi matrix (Df)p의 rank가 r일때 M은 n-r차원 미분다양체이다. 이때 미분가능함수 f : |R^(n) → |R 에 대하여 점 p_(0)∈M가 함수  ̄f = f|M : M→ |R의 임계점이기 위한 필요충분조건은 ( grad f)p_(0) = α_(1)(grad f_(l))p_(0) +‥‥‥+a_(r).(grad f_(r))p_(0), α_(1)∈|R로 표시되는 것이다. 다음은 p_(0) ∈M을  ̄f의 임계점이라 하고 P를 |R^(n)에서 p_(0)에서의 접벡타공간 Tp_(0)(M)으로에 직교사영 P:|R^(n)→Tp_(0)(M)이라 하고, 행열 Hp_(0) =P(H(f)p_(0) - ^(Υ)Σ_(i=1) α_(i)H(f_(i))p_(0) ) P 를 만들때 임계점 p_(0)가 비퇴화이기 위한 필요충분조건은 그의 위수 (rank)가 n-r, 즉 rank Hp-(0) : n-r 임을 증명하였다.;Let f be a smooth real valued function on a manifold M. A point p∈M is called a critical point of f, if the induced map f : T_(p)M T_(f(p))R is zero. If we choose a local coordinate system (x^(1), ..., x^(n) in a neighborhood U of p this means that ∂f/∂x(p) = ∂f/∂x^(n)(p) = 0. The real number f (p) is called a critical value of f. A critical point p is called non-degenerate if and only if the matrix (∂^(2)f/∂x^(i)∂x^(j)(p)) is non-singular. If p is a critical point of f, we define a symmetric bilinear functional (Hf)_(p) : T_(p)M x T_(p)M→R called the Hessian of f at p. If (x^(1), ..., x^(n)) is a local coordinate system and v=□ε_(i)(∂/∂x^(i))p, w=□η_(j)(∂/∂x^(j))p, then (Hf)p(v,w)=□∂^(2)f/∂x^(i)∂x^(j)(p)ε_(i)η_(j) We can now talk about the index and the nulllity of the bilinear functional (Hf)_(p) on T_(p)M. The index of a bilinear functional H, on a vector space V, is defined to be the maximal dimension of a subspace of V on which H is negative definite ; the nullity is the dimension of the null space, i.e., the subspace consisting of all v∈V such that H(v,w)= for every w∈v. The purpose of this note, if manifold M is obtained by the null points of differentiable mapping f : R^(n)→R of rank r, we can obtain the critical points; Theorem 1, Theorem 4.
Fulltext
Show the fulltext
Appears in Collections:
교육대학원 > 수학교육전공 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE