View : 432 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author임미희-
dc.creator임미희-
dc.date.accessioned2016-08-26T03:08:53Z-
dc.date.available2016-08-26T03:08:53Z-
dc.date.issued2001-
dc.identifier.otherOAK-000000002914-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/194447-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000002914-
dc.description.abstract본 연구에서는 생체 내에서의 산화 반응에 관여하는 효소 중, 활성화 자리에 철-포르피린 착물을 가지고 있는 산소화 효소인 cytochrome P-450의 모델 화합물을 가지고, 산소 전달 반응 메커니즘과 활성적인 중간체를 규명하고자 하였다. 먼저, aprotic (CH₃CN: CH₂Cl₂=1:1) 과 protic (CH3OH:CH₂Cl₂=3:1) 용매에서 올레핀의 경쟁적인 에폭시화 반응(cis- / trans-stilben, cyclooctene / trans-stilbene)을 전자가 부족한 철 포르피린 촉매와 여러 가지 산화제인 H₂O₂, t-BuOOH, m-CPBA 를 사용하여 행하였다. 또한, 올레핀의 경쟁적인 에폭시화 반응을 잘 알려져 있는 중간체 중 하나인 (Porp)^+×Fe^IV=O, 고산화가 철(IV) 옥소 포르피린 양이온 라디칼 종을 직접 합성하여 행하였다. 그 결과, protic 용매에의 중간체는 (Porp)^+×Fe^IV=O이고, aprotic 용매에서는 산화제-철 포르피린 착물 중간체, Fe-OOR 종임을 결론 지을 수 있었다. 생성되어 질 수 있는 중간체인 (Porp)^+×Fe^IV=O와 Fe-OOR의 결정되는 요인으로, 메탄올과 같은 protic 용매는 general-acid 촉매로 작용하여, Fe-OOR 종의 O-O 결합의 분열 속도를 증가시켜 (Porp)^+×Fe^IV=O 종의 형성을 촉진시킬 수 있다는 것을 제안하였다. 그 general-acid 촉매가 중간체의 성질에 미치는 영향을 알아 보기 위해, 다양한 pKa 가치의 알코올과 CH₂Cl₂ 를 혼합시킨 용매에서, 그리고 산 (HClO₄)이 첨가된 aprotic 용매에서 경쟁적인 에폭시화 반응을 행하였다. 생성물들의 비율은 용매의 산성도의 정도에 의존하면서 변하였다. 이것은 Fe-OOR 종과 올레핀의 경쟁적인 에폭시화 반응과 O-O 결합의 분열과정 간의 경쟁 경로가 존재함을 증명할 수 있었다. 또한 경쟁적인 에폭시화 반응에서 알 수 있었던 사실은 전자가 부족한 포르피린 리간드를 포함하는 (Porp)^+×Fe^I V=O, 고산화가 철(IV) 옥소 포르피린 양이온 라디칼 중간체가 cis-stilbene보다는 trans-stilbene을 선호한다는 예측할 수 없었던 결과이었다. 좀 더 에너지적으로 어려운 반응인 하이드록시화 반응에서, 중간체의 연구를 더 확장해 본 결과, -40 oC 의 CH₃CN와 CH₂Cl₂의 혼합 용매에서 axial 리간드가 chloride음이온을 가지고 전자가 부족한 철 포르피린 착물 촉매하에 m-CPBA을 사용한 알칸의 하이드록시화 반응에서 산화제-철 포르피린 착물 중간체, acylperoxo-iron(III) porphyrin complexe intermediates가 관여하는 증거를 얻을 수 있었다. 또한 axial 리간드가 triflate(CF₃SO₃-)인 경우에는, (Porp)^+×Fe^IV=O, 고산화가 철(IV) 옥소 포르피린 양이온 라디칼 중간체가 형성됨을 관찰 할 수 있었다. 이 결과들은 이미 Newcomb, Coon, Vaz와 공동 연구자들에 의해 제안된 cytochrome P-450 효소에서는 두 개의 구별적인 전자 친화적 산화제((Porp)^+×Fe^IV=O와 iron(III)-hydrogen peroxide (Fe-H₂O₂ intermediate))들이 존재한다는 사실과 일치하였다. 또 다른 중간체의 존재에 대한 연구로는, 다양한 axial 음이온 리간드를 가진 Fe(TMP)X와 산화제(PhIO 그리고 m-CPBA)와의 반응이 이루어졌다. 옥소 철(IV) 포르피린 중간체의 형성은 PhIO 그리고 m-CPBA의 산화제를 사용한 반응에서 axial 음이온 리간드에 큰 영향을 받음을 알 수 있었다. -40 oC 의 CH₂Cl₂ 또는 toluene용매에서, Fe(TMP)X에서 X-가 Cl-, F-, CH₃CO₂- 그리고 OH-인 경우에는 철(IV) 옥소 포르피린 중간체가 형성이 되었고, X-가 CF₃SO₃-, ClO₄-, 그리고 NO₃-인 경우에는 철(IV) 옥소 포르피린 양이온 라디칼 중간체, (TMP)+×FeIV=O가 형성되었다. 이것은 PhIO 반응에서 처음으로 철(IV) 옥소 포르피린 양이온 라디칼 중간체를 일반화 시킬 수 있었다. Toluene용매에서 m-CPBA와 Fe(TMP)X의 반응에서는 X-가 CH₃CO₂- 그리고 OH-인 경우에는 이미 Groves와 Watanabe가 발표한 (TMP)Fe^III N-oxide, X-가 CF₃SO₃-, ClO₄-, 그리고 NO₃-인 경우에는 (TMP)+×FeIV=O을 관찰할 수 있었다. 이 결과들은 비극성 용매에서 peracid O-O 결합이 불균일하게 또는 균일하게 분리될 수 있음을 의미한다. 여기서는 Fe(TMP)X가 PhIO와 m-CPBA들과의 반응들에서, 다른 옥소 철(IV) 포르피린 중간체들의 형성에 axial 음이온 리간드의 효과를 간단하게 논하였다. ; Part I We have studied the competitive epoxidations of olefins with cis- and trans-stilbenes and with cyclooctene and trans-stilbene in iron porphyrin complex-catalyzed epoxidation reactions by H₂O₂, tert-butyl hydroperoxide (t-BuOOH), and m-chloroperoxybenzoic acid (m-CPBA) in protic solvent (i.e., a solvent mixture of CH₃OH and CH₂Cl₂) and aprotic solvent (i.e., a solvent mixture of CH₃CN and CH₂Cl₂) at room temperature under catalytic reaction conditions. The competitive epoxidations were also carried out with in situ generated high-valent iron(IV) oxo porphyrin cation radical complexes in aprotic solvent under stoichiometric reaction conditions. By determining the ratios of epoxide products formed in the competitive epoxidations, we were able to conclude unambiguously that the reactive species generated in protic solvent are high-valent iron(IV) oxo porphyrin cation radical complexes 3 and the intermediates formed in aprotic solvent are oxidant-iron(III) porphyrin intermediates 2. A protic solvent such as methanol is proposed to function as a general-acid catalyst, thereby increasing the rate of O-O bond cleavage of 2 to form 3. In the absence of general-acid catalysis such as in aprotic solvent, the rate of O-O bond cleavage of 2 is relatively slow and 2 transfers its oxygen to olefins prior to the formation of 3. In order to further examine the effect of the general-acid catalysis on the nature of epoxidizing intermediates, we carried out competitive epoxidations in the solvent mixtures of alcohol/CH₂Cl₂ using alcohols of varying pKa values and in the presence of an acid (i.e., HClO₄) in aprotic solvent. The product ratios were found to vary depending on the strength of the solvent acidity, demonstrating that the reaction of 2 with olefin competes with the O-O bond cleavage of 2 that leads to the formation of 3. We also reported for the first time that a high-valent iron(IV) oxo porphyrin cation radical intermediate containing electron-deficient porphyrin ligand shows an unexpected preference for trans-stilbene over cis-stilbene in the competitive epoxidations of cis- and trans-stilbenes. Part II We have obtained evidence that acylperoxo-iron(III) porphyrin complexes 1a are involved as reactive hydroxylating intermediates in the hydroxylation of alkanes by m-chloroperoxybenzoic acid (m-CPBA) catalyzed by electron-deficient iron(III) porphyrin complexes containing chloride as an anionic axial ligand in a solvent mixture of CH₂Cl₂ and CH₃CN at -40 oC. In addition to the intermediacy of 1a, oxoiron(IV) porphyrin cation radical complexes 2 are formed as the reactive hydroxylating intermediates in the alkane hydroxylations by m-CPBA catalyzed by the iron(III) porphyrin complexes containing triflate (CF₃SO_3-) as an anionic axial ligand under the same reaction conditions. These results are consistent with the recent proposal by Newcomb, Coon, Vaz, and co-workers for cytochrome P-450 reactions that two distinct electrophilic oxidants such as 1a and 2 effect the alkane hydroxylations in iron porphyrin models. Part III The reactions of Fe(TMP)X (TMP = meso-tetramesitylporphinato dianion) with oxidants such as iodosylbenzene (PhIO) and m-chloroperoxybenzoic acid (m-CPBA) have been investigated using the Fe(TMP)X complex containing various anionic axial ligands. The formation of oxoiron(IV) porphyrin intermediates in the reactions of PhIO and m-CPBA was found to be markedly influenced by the anionic axial ligands bound to the Fe(TMP)X complex. When X- in Fe(TMP)X was Cl-, F-, CH₃CO_2-, and OH-, an iron(IV) porphyrin complex was formed in the PhIO reactions in CH₂Cl₂ or toluene at -40 oC, whereas the same reactions performed with the Fe(TMP)X complex containing CF₃SO_3-, ClO_4-, and NO_3- as anionic axial ligands produced an oxoiron(IV) porphyrin cation radical intermediate 1, (TMP)+×Fe^IV=O. As far as we have been able to discern, this is the first clear observation that an oxoiron(IV) porphyrin cation radical complex was generated in PhIO reactions. In the reactions of Fe(TMP)X and m-CPBA performed in toluene, the formation of (TMP)Fe^III N-oxide was observed when X- in Fe(TMP)X was OH- and CH3CO2-, as Groves and Watanabe reported previously. However, when the m-CPBA reactions were performed with the Fe(TMP)X (X- = CF₃SO_3-, ClO_4-, and NO_3-) complexes in toluene, the formation of 1 was observed. These results demonstrate that the O-O bond of peracids can be cleaved both heterolytically and homolytically in nonpolar solvent. We briefly discussed the effect of anionic axial ligands on the formation of different oxoiron(IV) porphyrin intermediates in the reactions of PhIO and m-CPBA.-
dc.description.tableofcontentsList of Figures = iv List of Tables = v List of Abbreviations = vii Part I Abstract = viii I. Introduction = 1 II. Experimental Section = 4 II-1. Materials = 4 II-2. Instrumentation = 4 II-3. Reaction Conditions = 5 II-3-1. Catalytic competitive epoxidations in protic and aprotic Solvents = 5 II-3-2. Competitive epoxidations studied with in situ generated high-valent iron(IV) oxo porphyrin cation radical complexes = 5 III. Results and Discussion = 7 III-1. Competitive epoxidations in protic solvent = 8 III-2. Competitive epoxidations in aprotic solvent = 9 III-3. Effect of general-acid catalysis on the rate of O-O bond cleavage of (Porp)Fe^III-OOR = 12 IV. Conclusion = 15 V. References = 16 Part II List of Figures = iv List of Tables = . vi Abstract = ix I. Introduction = 32 II. Experimental Section = 34 II-1. Materials = 34 II-2. Instrumentation = 34 II-3. Reaction Conditions = 34 II-3-1. Hydroxylation of alkanes by iron porphyrin complexes = 34 II-3-2. UV-vis spectroscopic experiments = 35 II-3-3. 18O-labeled water experiments = 35 III. Results and Discussion = 37 IV. Conclusion = 42 V. Refernces = 43 Part III List of Figures = iv List of Tables = vi Abstract = x I. Introduction = 53 II. Experimental Section = 55 II-1. Materials = 55 II-2. Instrumentation = 55 II-3. Reaction Conditions = 56 II-3-1. Reactions of Fe(TMP)X with PhIO = 56 II-3-2. Reactions of Fe(TMP)X with m-CPBA in toluene = 56 II-3-3. Electrochemical measurements = 56 III. Results and Discussion = 58 III-1. Formation of oxoiron(IV) porphyrin intermediates in the reactions of Fe(TMP)X and PhIO = 58 III-2. Effect of anionic axial ligands on the formation of 1 and 2 in m-CPBA reactions in toluene = 59 IV. Conclusion = 62 V. Refernces = 63 국문초록 = 72-
dc.formatapplication/pdf-
dc.format.extent2101143 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleModel compound studies related to cytochrome P-450-
dc.typeMaster's Thesis-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 분자생명과학부-
dc.date.awarded2001. 2-
Appears in Collections:
일반대학원 > 생명·약학부 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE