View : 112 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author김진영-
dc.creator김진영-
dc.date.accessioned2017-08-28T20:30:58Z-
dc.date.available2017-08-28T20:30:58Z-
dc.date.issued1999-
dc.identifier.otherOAK-000000001617-
dc.identifier.urihttp://dspace.ewha.ac.kr/handle/2015.oak/193034-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000001617-
dc.description.abstractA_Ρ조건이 A _Ρ-ε조건임의 사실없이 Cubes와 One-parameter family of rectangles와 balls defined by a pseudo-metrics인 bases에 대해서 M_β가 L^Ρ에서 유계인 필요충분 조건은 A_Ρ조건임을 증명하고 또 dyadic cubes 일 때 two-weight 에 대해 생각한다. ; We show that M_β: L^p(ωdx) → L^p(ωdx) if and only if ω ∈ A_p, for 1<p<∞ is proved without using the factω ∈ A_p implies ω ∈ A_p-εe for some ε>0, for the basis of all cubes, the basis of one-parameter family of rectangles, and the basis of balls defined by a pseudo-metrics. Also we consider the two-weight case for the basis of dyadic cubes.-
dc.description.tableofcontentsAbstract = 1 1. Introduction = 2 2. Preliminaries = 5 3. Weighted norm inequalities for the maximal function with respect to cubes = 7 4. Weighted norm inequalities for maximal functions with respect to one-parameter family of rectangles and with respect to balls defined by means of certain psedo-metric. = 10 5. Two-weight inequalities for maximal operators = 15 References = 17 논문초록 = 18-
dc.formatapplication/pdf-
dc.format.extent598099 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleWeighted norm inequalities for hardy-littlewood maximal function for some differentiation bases-
dc.typeMaster's Thesis-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 수학과-
dc.date.awarded1999. 2-
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE