View : 72 Download: 0

Weighted norm inequalities for hardy-littlewood maximal function for some differentiation bases

Title
Weighted norm inequalities for hardy-littlewood maximal function for some differentiation bases
Authors
김진영
Issue Date
1999
Department/Major
대학원 수학과
Publisher
이화여자대학교 대학원
Degree
Master
Abstract
A_Ρ조건이 A _Ρ-ε조건임의 사실없이 Cubes와 One-parameter family of rectangles와 balls defined by a pseudo-metrics인 bases에 대해서 M_β가 L^Ρ에서 유계인 필요충분 조건은 A_Ρ조건임을 증명하고 또 dyadic cubes 일 때 two-weight 에 대해 생각한다. ; We show that M_β: L^p(ωdx) → L^p(ωdx) if and only if ω ∈ A_p, for 10, for the basis of all cubes, the basis of one-parameter family of rectangles, and the basis of balls defined by a pseudo-metrics. Also we consider the two-weight case for the basis of dyadic cubes.
Fulltext
Show the fulltext
Appears in Collections:
일반대학원 > 수학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE