View : 493 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.author이강옥-
dc.creator이강옥-
dc.date.accessioned2016-08-26T02:08:23Z-
dc.date.available2016-08-26T02:08:23Z-
dc.date.issued1996-
dc.identifier.otherOAK-000000000760-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/191862-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000000760-
dc.description.abstractβ-안정선으로부터 멀리 떨어진 중성자부족인 새로운 동위원소 `^200 Fr, `^196 Rn, `^197g,197m Rn, `^195g,195m At를 `^169 Tm(`^36 Ar, 5n)`^200 Fr (E_1ab = 191MeV), `^166 Er(`^36 Ar,5∼6n) `^196,`^197g,`^197m Rn(E_1ab = 208, 199 MeV), `^164 Er(`^36 Ar,p4n)`^195g,195m At(E_1ab = 199 MeV) 반응에서 각각 생성하였다. 표적 핵 `^169 Tm(∼100% 농축), `^166 Er(96.3% 농축), `^164 Er(62.4%농축)으로부터 되 튀어 나온 반응 생성물은 GARIS(Gas가 채워진 되 튐 동위원소 분리기)에 의하여 입사선속과 분리되었으며, MCP(마이크로 채널 판)을 통과한 후 GARIS초점면에 위치한 이중면의 PSD(위치감응 실리콘 검출기)와 SSD(스트립 형 실리콘 검출기)에 주입되었다. PSD주위의 SSD들은 α-붕괴사상의 검출 효율을 높이기 위하여 장치되었다. 반응생성물의 비행시간과 대략적인 질량측정을 위하여 PSD의 상류 60.8㎝되는 곳에 MCP Assembly를 설치하였다. 5ms간격으로 입사선속의 켜짐과 꺼짐이 반복되는 펄스 선속을 사용하였다. 분석 자료로는, 증발 잔유 핵이 PSD에 주입된 후 같은 위치, 짧은 시간 내에 연속적으로 α-붕괴하는 조건을 만족시키는 것 만을 선택하여 분석하였다. 새로운 동위원소의 확인은 다음조건에 의하였다. (1) 3-중 동시 상호 관계, 즉ER-α1-α2가 있을 것. (2) α2-에너지와 반감기가 문헌 값과 일치할 것. (3) α1-에너지와 반감기가 알려진 계통 값과 맞을 것. `^200 Fr, `^196 Rn, `^197g,195m At의 α-에너지는 각각 7482±20(keV), 7492±30(keV), 7289±30(keV), 7362±30(keV), 7089±30(keV), 7185±30(keV)로 측정되었으며, 그 반감기는 각각 48^+15`_-9 (ms), 3^+4`_-2 (ms), 23^+44`_-9 (ms), 23^+21`_-8 (ms), 84^+20`_-14 (ms), 26^+31`_-9 (ms)으로 측정되었다. 측정된 α-에너지와 반감기는 이론 값과 오차범위 내에서 일치하였다. 본 연구에서 처음으로 생성된 α-붕괴하는 우-우 핵 `^196 Rn에 대하여, α-분광학적 인자로 그 특성을 분석하였으며, Z = 79~90인 우-우 핵의 바닥상태와 비교하였다. α-분광학적 인자는 실험적 α-붕괴 폭과 이론적α-붕괴 폭의 비로 정의된다. 계통적 S_α-값으로부터 `^196 Rn은 다른 핵보다 더 많은 α-군집을 이룬다는 것을 알 수 있었으며, 중성자 부족인 영역에서 Rn-값들은 딸 핵인 Po-값들과 달리 중성자 수가 112근처에서 빠르게 증가하였다. 이는 이 영역에서 Rn동위원소의 배열과 Po동위원소의 배열이 다를 것으로 기대되며, 이에 대한 가능한 해석을 논하다. ; New neutron-deficient isotopes `^200 Fr, `^196 Rn, `^197g,197m Rn, `^195g,195m At that are far away from the β-stability line have been produced in `^169 Tm(`^36 Ar, 5n)`^200 Fr (E_1ab = 191MeV), `^166 Er(`^36 Ar,5∼6n) `^196,`^197g,`^197m Rn(E_1ab = 208, 199 MeV) and `^164 Er(`^36 Ar,p4n)`^195g,195m At(E_1ab = 199 MeV) reactions, respectively. The reaction products recoiling out of the `^169 Tm(∼100% enriched), `^166 Er(96.3% enriched), and `^164 Er(62.4% enriched) targets were separated from the incident beam `^36 Ar using GARIS(Gas-filled Recoil Isotope Separator)and were implanted onto a double sided PSD(Position-sensitive Silicon Detector)and SSD(Strip-type Silicon Detector)placed at the focal-plane of the GARIS after traversing a large MCP(Micro Channel Plate)Assembly. The SSDs located around the PSD were set in order to enhance the α-decay event detection efficiency. A large-area MCP Assembly was set at 60.8㎝ upstream from the PSD to measure the TOF(Time Of Flight)and roughly estimate the masses of reaction productions. A pulsed beam with the repetitive mode of 5 ms Beam-On and 5 ms Beam-Off was used. In this analysis, we have picked up only the data satisfying the condition that the injection of evaporation residues (ERs) into the PSD and consecutive α-decay were coincident within a reasonably short time and that the both events took place on the same position of PSD. The identification of new isotopes was determined on the condition that (i) there exists the 3-fold coincidence, ER-α1-α2. (ii) the energy and half-life of α2 agree with known values. (iii) the energy and half-life of α1 match with systematics. As a result, observed α-energies of `^200 Fr, `^196 Rn, `^197g,197m Rn, `^195g,195m At were 7482±20(keV), 7492±30(keV), 7289±30(keV), 7362±30(keV), 7089±30(keV), 7185±30(keV). And their measured half-lives were 48^+15`_-9 (ms), 3^+4`_-2 (ms), 23^+44`_-9 (ms), 23^+21`_-8 (ms), 84^+20`_-14 (ms), 26^+31`_-9 (ms), respectively. These observed values are consistent with theoretical values within the error range. For the produced α-decaying even-even nucleus `^196 Rn, the spectroscopic factor defined by the ratio of experimental α-decay width to the theoretical one (S_α =Γ_exp / Γ_sp ) was examined for the first time. The α-decay characteristics of this new isotope were compared with ground states of even-even nuclei with Z=78~90 in terms of the α-spectroscopic factors. We found, from the systematics of S_α-values, that the `^196 Rn was more developed in α-clustering than other even-even nuclei. Moreover, the Rn isotopes were quite different from their daughters Po isotopes in the very neutron-deficient region. Rn-values showed a steep increase with neutron number around 112, presenting a contrast with the Po isotopes in this region. Possible explanations were discussed.-
dc.description.tableofcontentsTITLE PAGE ----------------------------------------------------------- ⅰ SIGNATURE PAGE ------------------------------------------------------- ⅲ TABLE OF CONTENTS ---------------------------------------------------- ⅳ LIST OF FIGURES ------------------------------------------------------ ⅵ ACKNOWLEDGEMENTS ----------------------------------------------------- ⅹ I. INTRODUCTION ------------------------------------------------------ 1 II. HEAVY ION FUSION REACTION ---------------------------------------- 7 III. α-SPECTROSCOPIC FACTORS ---------------------------------------- 12 IV. EXPERIMENTS ------------------------------------------------------ 17 1. Targets and Reaction Energies ------------------------------------ 21 2. GARIS (Gas-filled Recoil Isotope Separator) ---------------------- 29 3. Electron emission type detector equipped with Micro Channel Plate (MCP) ---------------------------------- 34 4. PSD (Position-sensitive Silicon Detector) ------------------------ 41 (1) Characteristics and Resolutions of the PSD and the SSD(Strip-type Silicon Detector) ---------------------- 41 (2) Accidental coincident rate ------------------------------------- 48 5. Electronic Circuits ---------------------------------------------- 51 V. DATA TAKING AND RESULTS ------------------------------------------- 57 1. Data taking ------------------------------------------------------ 57 2. Results ---------------------------------------------------------- 60 VI. ANALYSIS --------------------------------------------------------- 73 1. Calculation of α-Spectroscopic Factors -------------------------- 73 2. Comparing the experimental Q_α with theoretical one from the mass formula --------------------------- 83 3. Evaluation of the Cross Section ---------------------------------- 86 VII. CONCLUSIONS ----------------------------------------------------- 88 APPENDIX ------------------------------------------------------------- 91 A. Calculation of the reaction energy ------------------------------- 91 B. Energy loss of the incident `^36 Ar after passing `^197 Au target ------------------------------------------------------------------ 95 REFERENCES ----------------------------------------------------------- 96 ABSTRACT(Korean) -----------------------------------------------------100-
dc.formatapplication/pdf-
dc.format.extent4382992 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleProduction of new neutron deficient nuclei using heavy ion fusion reaction-
dc.typeDoctoral Thesis-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 물리학과-
dc.date.awarded1996. 8-
Appears in Collections:
일반대학원 > 물리학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE