View : 789 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor박진병-
dc.contributor.author이정은-
dc.creator이정은-
dc.date.accessioned2016-08-25T11:08:58Z-
dc.date.available2016-08-25T11:08:58Z-
dc.date.issued2011-
dc.identifier.otherOAK-000000067051-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/188768-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000067051-
dc.description.abstractThe efficiency of the oxygenase-based whole cell biocatalysis can be influenced by activity of the catalytic enzymes, cofactor regeneration capacity, transport efficiency of reaction substrates, biocatalyst stability against substrates and products, and byproduct formation. In this study, effects of substrate transport efficiency and cofactor regeneration capacity on the oxygenation of both cyclohexanone and its derivatives by the recombinant Corynebacterium glutamicum expressing the chnB gene of Acinetobacter calcoaceticus NCIMB 9871were investigated. The recombinant C. gltutamicum cells that were treated with ethambutol to inhibit the activity of arabinosyltransferases involved in the synthesis of cell wall arabinogalactan and mycolate layers, showed the higher oxygenation activity of cyclohexanone derivatives (e.g., ethyl 2-cyclohexanoneacetate, 2-(2’-acetoxyethyl)cyclohexanone) as compared to untreated cells. This result indicates that the biotransformation efficiency of C. glutamicum-based biocatalysts, with respect to medium- to large-sized lipophilic organic substrates (M.W. > ca. 170 Da), can be enhanced by engineering their cell wall outer layers, which are known to function as a formidable barrier to lipophilic molecules. The cofactor regeneration activity of C. gltutamicum-based biocatalyst would be increased by coexpressing a functional transhydrogenase pntAB of Escherichia coli, which catalyzes interconversion between NADH and NADPH. Unexpectedly, introduction of the pntAB genes into C. gltutamicum has no positive effects on the oxygenation activity of cyclohexanone. PntAB expression seemed to disturb carbon metabolism of C. glutamicum, resulting in a low growth rate as well as a low biotransformation rate.;산화효소를 이용한 생촉매의 효율은 촉매효소의 활성, 보효소 재생효율, 반응 기질의 투과 효율, 반응기질과 부산물에 대한 효소의 안정성이 영향에 영향을 받는다. 본 연구에서 Acinetobacter calcoaceticus NCIMB 9871에서 유래된 chnB 유전자를 발현한 C. glutamicum을 생촉매로 이용할 때, cyclohexanone 과 그 유도체의 산화반응에서 기질의 투과와 보효소 재생 능력에 대한 영향을 조사했다. Arabinogalactan층과 mycolate층의 합성에 관여하는 효소인 arabinogalactansferases의 활성을 저해시키기 위해 ethambutol이 처리된 재조합 C. glutamicum에서 cyclohexanone derivatives(e.g., ethyl 2-cyclohexanoneacetate, 2-(2’-acetoxyethyl)cyclohexanone))의 산화활성이 더 높게 나타났다. 이 결과로부터 분자량이 크고 소수성인 기질을 이용할 때 소수성 물질의 투과를 막는 역할을 하는 세포벽을 조작함으로써 C. glutamicum을 이용한 생촉매의 생물전환 효율을 증가시킬 수 있다는 결론을 얻을 수 있었다. NADH와 NADPH 간의 전환을 촉매하는 효소인 E. coli 의 transhydrogenase pntAB 유전자를 공동 발현시킴으로써 C. glutamicum을 이용한 생촉매의 보효소 재생효율을 높이고자 하였다. C. glutamicum 세포 내부에 pntAB 유전자를 발현시켰을 때 cyclohexanone의 산화 활성에서 긍정적인 효과를 볼 수 없었다. PntAB 유전자의 발현은 C. glutamicum의 탄소 대사를 방해함으로써 생장 속도 뿐만 아니라 생물전환 속도를 낮추는 결과를 초래한 것으로 보인다.-
dc.description.tableofcontentsI.Part 1: Increasing of transport efficiency of 2-(2'-acetoxyethyl)cyclohexanone 1 1.Introduction 2 1.1.Oxidation of cyclohexanone derivatives 2 1.2.Cell envelope structure of C. glutamicum 6 1.3.Cell wall permeabilizing methods 9 2. Materials and Methods 12 2.1.Construction of the recombinant C. glutamicum-based biocatalyst 12 2.2.Culture conditions of the recombinant C. glutamicum 12 2.4.Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 13 2.5. Whole cell assay for CHMO activity 13 2.6. Measurement of ketones and lactones concentration 14 3.Results and Discussion 16 3.1.Oxygenation of 2-(2'-acetoxyethyl)cyclohexanone 16 3.2.Effect of ethambutol on cell growth and chnB expression 19 3.3. Effect of ethambutol treatment on the oxygenation of cyclohexanone derivatives 22 D. Summary and Conclusion 26 II. Part 2: Increasing of cofactor regeneration capacity 27 1.Introduction 28 1.1.Redox biocatalysis 28 1.2.Central carbon metabolic pathway of C. glutamicum 28 1.3.Transhydrogenase genes, pntAB 31 2. Materials and Methods 34 2.1. Plasmid construction for expression of chnB in C. glutamicum 34 2.2. Electroporation 35 2.3. Culture conditions of C. glutamicum 36 2.4.Carbon balance analysis 37 2.5. Measurement of Gas and byproduct for carbon balance analysis 37 2.6. Sodium dodecyl sulfur-polyacrylamide gel electrophoresis 38 2.7. In Vitro assay 38 2.8. Whole cell CHMO activity assay 39 2.9. Biotransformation of cyclohexanone into ε-caprolactone 39 3. Results 40 3.1. Carbon balance analysis of C. glutamicum during oxygenation of cyclohexanone 40 3.2.Construction of the recombinant C. glutamicum-expressing the pntAB genes 47 3.3.Biotransformation of cyclohexanone into ε-caprolactone 55 D. Summary and Conclusion 61 References 62 Abstract in Korean (국문초록) 70-
dc.formatapplication/pdf-
dc.format.extent2189081 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleEngineering of the recombinant Corynebacterium glutamicum-based biocatalyst for oxygenation of cyclohexanone derivatives-
dc.typeMaster's Thesis-
dc.format.pageviii, 71 p.-
dc.identifier.thesisdegreeMaster-
dc.identifier.major대학원 식품공학과-
dc.date.awarded2011. 2-
Appears in Collections:
일반대학원 > 식품공학과 > Theses_Master
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE