View : 47 Download: 0

Inorganic Nanohybrids with Electrochemical and Optochemical Functions

Inorganic Nanohybrids with Electrochemical and Optochemical Functions
Issue Date
대학원 화학·나노과학과
이화여자대학교 대학원
New inorganic-inorganic, inorganic-organic, and organic-organic hybrid systems with enhanced electrochemical and optochemical properties have been designed and successfully prepared by applying two different methods; exfoliation-reassembling reaction and electrochemical deposition. In particular, various exfoliated layered metal oxide nanosheets (layered manganate, layered titanate, layered molybdate, and etc.) were reassembled in the presence of metal oxide nanoparticles to make highly porous inorganic-inorganic nanohybrids. On the other hand, electrochromic materials such as metal oxides, metal hexacyanoferrates, and conducting polymers were electrochemically deposited onto the conducting glass substrates, and each thin film was subsequently assembled into full-cell electrochromic devices where each part was intentionally designed to have proper patterns for desired applications. The physicochemical properties of the fabricated hybrid systems were finely tailored at the molecular level in order to optimize their application as lithium ion battery (LIB) electrodes, and electrochromic devices (ECDs). At first, in Chapter 1, the porous heterostructure of TiO2-pillared layered MnO2 nanohybrid was synthesized via exfoliation-reassembling reaction and subsequent heat treatment. The applicability of the present nanohybrid as a cathode material for LIB has been investigated by monitoring the electrochemical intercalation of lithium ion. This study clearly demonstrates that the hybridization between TiO2 and layered MnO2 gives rise to a remarkable enhancement of the discharge capacity compared to that of the pristine and the theoretical capacity. In Chapter 2 and 3, to fabricate mesoporous anode materials with delaminated structure, the exfoliated layered titanate in aqueous solution was reassembled in the presence of anatase TiO2 and SnO2 nanosol particles, respectively, to induce a great number of mesopores and eventually a large surface area. According to the electrochemical performance, the present nanohybrids were found to be much better than the layered titanate or TiO2 and SnO2 nanosol particles alone in terms of the specific capacity and capacity retention. Furthermore, as shown in chapter three, the layered titanate nanosheets homogeneously distributed between SnO2 nanoparticles resulted in an inhibition of the volume expansion of the SnO2 nanoparticle during Li alloying/dealloying, suggesting that hybridization might play an important role in efficient electrochemical performance. In Chapter 4, X-ray absorption spectroscopy (XAS) studies on the low-dimensional and nanocrystalline hybrid materials (layered MoO3, layered NbS2, cerium oxide-layered silicate nanohybrid), for which it is difficult to determine the local symmetries around metal ions by mean of conventional powder X-ray diffraction, have been performed. Specifically, in-situ XAS was used to elucidate the structural variation of a-MoO3 electrode upon discharge/charge reaction in LIB. According to the XAS analysis, it has determined that the hexavalent Mo atoms in a-MoO3 framework were reduced as the amount of intercalated lithium ions increased. As the lithium de-intercalation proceeded, most of the pre-edge peaks were restored again; however de-intercalation reaction was partially irreversible. On the other hand in Chapter 5, a new dual-polymer ECD composed of poly(3,4-(1,4-butylene-(2-ene)dioxy)thiophene) (PBueDOT) and polyaniline (PANI) in combination with hydrophobic lithium electrolyte was developed successfully. To realize this system, alkylenedioxy ring in the BueDOT backbone was expanded to include a strong electron-donating alkylenedioxy bridge, and the thickness and surface morphology of the corresponding PBueDOT film were controlled systematically. Not only did the the expanded alkylenedioxy ring in the BueDOT backbone improve electrochromic performances, but the dual electrochromic polymer electrode system did as well. In Chapter 6 and 7, PEDOT (poly-(3,4-ethylenedioxythiophene)) -based hybrid ECDs were prepared by employing PEDOT cathode and polyaniline (PANI) and Prussian Blue (PB) anodes, respectively. According to the fundamental properties of EC displays, such a complementary full-cell system showed a synergetic effect in electrochromic properties compared to when they were fabricated as a half-cell ECD. Finally in Chapter 8, an inorganic-inorganic hybrid ECD as an optical iris for lens applications was developed successfully through photolithography and wet etching techniques primarily for fabricating the patterned electrodes, and subsequent electrodeposition of WO3 and PB. The present patterned ECD could control the optical transmittance simply with 28 %, 51 %, 75 %, and 95 % at 600 nm by applying proper voltage to each of patterns, and was highly stable with only less than 10 % contrast loss even after 5000 times switching.;본 연구에서는 향상된 전기화학적, 광화학적 특성을 갖는 새로운 무기-무기, 무기-유기, 유기-유기 하이브리드 시스템을 박리화-재조합법과 전기화학증착법을 통해 개발하였다. 구체적으로, 박리화된 층상무기격자물질을 무기산화물 나노입자와 재조합하여 높은 다공특성을 가지는 무기-무기 나노하이브리드 물질을 개발하였으며, 전기변색물질인 메틸 옥사이드, 메탈 헥사사이아노페레이트, 전도성 고분자 등을 전도성 유리기판에 전기화학증착법으로 박막화시키고, 이를 전극으로 이용하여 무기-무기, 무기-유기, 유기-유기 하이브리드 전기변색소자를 제조하였다. 이와 같이 개발된 새로운 하이브리드 시스템은 리튬 이차전지의 양극 및 음극 물질, 전기변색소자의 극물질, 광촉매 등의 특정 반응을 위하여 인위적으로 설계되었으며, 각각의 효율측정 결과, 향상된 물리화학적 특성을 지니고 있음을 확인하였다. 제 1장에서는 박리화된 망간 산화물 콜로이드를 1 나노미터 크기의 이산화티탄 나노졸과 재조합한 후 열처리를 통해 가교화된 무기-무기 나노하이브리드 물질을 개발하였다. 전기화학적 실험을 통해 양극물질로써의 특성을 평가한 결과, 개발된 물질의 충방전 용량이 출발물질과 이론적으로 계산한 충방전 용량보다 상당히 증가하였음을 확인하였다. 제 2장과 3장에서는 박리화된 층상 티타네이트 물질을 이산화티탄과 산화주석 나노졸 입자와 재조합하여 높은 메조포러스 특성을 갖는 리튬이차전지의 음극물질을 개발하였다. 개발된 물질들은 출발물질과 비표했을 때 높은 충방전 용량과 용량 유지율을 보였다. 특히 제 3장에서는 층상 티타네이트가 산화주석 나노입자의 부피 팽창을 막아주는 역할을 하는 것으로 보아 하이브리드 구조가 전기화학적 리튬 탈삽입 반응에 효율적임을 입증하였다. 제 4장에서는 층상 몰리브데이트, 층상 니오븀설파이드, 층상 실리케이트-세리아 하이브리드 물질에 대해 X-선 회절분석법으로 분석이 어려운 메탈 이온 주위의 국부구조를 X-선 흡수분광법을 통해 밝혔다. 특히 층상 몰리브데이트에 대해 방사광과 전기화학적 인시츄 실험을 병행하여 충∙방전을 통해 전해질인 리튬이온이 탈∙삽입 되면서 변화하는 몰리브덴의 산화상태, 배위구조 및 구조적 안정성 등을 평가하였다. 제 5장에서는 전도성 고분자인 피돗의 유도체를 개발하고, 전기화학증착법을 통해 박막화한 다음, 폴리아닐린 박막을 상대전극으로 사용하여 상호보완적으로 최적화된 유기-유기 하이브리드 전기변색소자를 개발하였다. 개발된 소자는 기존의 피돗 유도체 박막과 비교했을 때 향상된 전기변색효율과 변색속도를 보임을 확인하였다. 제 6장과 7장에서는 피돗을 환원발색형 전극으로, 폴리아닐린과 프러시안 블루는 산화발색형 전극으로 이용하여 무기-유기, 유기-유기 하이브리드 전기변색소자를 개발하였다. 개발된 하이브리드 소자는 각각의 반쪽소자일 때보다 향상된 전기변색특성을 보였다. 마지막으로 제 8장에서는 포토리소그라피와 습식식각기술을 이용하여 패턴 기판을 형성하고, 상호보완적인 산화텅스텐과 프러시안 블루를 패턴 기판에 전기층착법을 통해 박막화하여, 조리개로 응용 가능한 무기-무기 하이브리드 전기변색소자를 개발하였다. 개발된 소자는 600 nm 영역에서 투과도가 28 %, 51 %, 75 %, 95 %로 조절되었으며, 변색효율이 5000번의 사이클링 이후에도 약 10 % 정도만 감소함을 보여 상당히 안정한 소자임을 증명하였다.
Show the fulltext
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.