View : 1071 Download: 0

Full metadata record

DC Field Value Language
dc.contributor.advisor김동수-
dc.contributor.author크리스티나 올라키탄 이작베미-
dc.creator크리스티나 올라키탄 이작베미-
dc.date.accessioned2016-08-25T11:08:01Z-
dc.date.available2016-08-25T11:08:01Z-
dc.date.issued2010-
dc.identifier.otherOAK-000000056810-
dc.identifier.urihttps://dspace.ewha.ac.kr/handle/2015.oak/188126-
dc.identifier.urihttp://dcollection.ewha.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000056810-
dc.description.abstractSearch for eco-friendly adsorbents with high metal-binding capacities has intensified. Materials locally available in large quantities such as natural materials, agricultural waste or industrial by-products have been investigated in order to help industries reduce the cost of wastewater disposal and as well provide a potential alternative to activated carbon which is currently being employed in the treatment of heavy metal-laden wastewater. The purpose of this work is to develop a substitute adsorbent from a natural clay mineral resource, which can effectively replace activated carbon in the removal of toxic heavy metals from industrial effluents. Montmorillonite (MMT) is a natural clay mineral and owing to its crystal chemical features, heavy metal retention by the mineral can occur by adsorption and/or cation exchange reaction. Therefore, the ability of MMT, to adsorb toxic heavy metal ions from water environment is investigated by studying and modifying its surface properties. Although, the use of MMT in the removal of toxic heavy metal ions from industrial effluents has been extensively studied, little is known about the adsorptive behavior of MMT when modified at high temperature and high acidic conditions. The novel aspects of this study were the discovery of a crossing point for the determination of MMT’s point of zero charge (PZC), its high temperature and acidic surface modifications towards its use as adsorbent for heavy metal ions removal from toxic metal-loaded industrial wastewater. Batch experimental studies were designed and conducted to investigate and determine the physico-chemical surface properties of MMT using the potentiometric and mass titration techniques. Cu(II) and Ni(II) adsorption from aqueous solution followed, in an attempt to validate the surface properties. Towards enhancing the adsorptive potentials of MMT, surface modification with sodium chloride, sulfuric acid and zirconium oxychloride solutions were carried out, followed by detailed material characterization using the standard procedures of chemical analysis, X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and infrared spectroscopy. The adsorption performance of the modified-MMTs (sodium chloride modified montmorillonite (Na-MMT), acid modified montmorillonite (A-MMT) and zirconium pillared montmorillonite (Zr-MMT)) were evaluated in next phase of adsorption processes from which optimum conditions such as adsorbent dosage, pH, temperature, contact time and metal ion concentration were determined. The mechanism, kinetics and thermodynamics parameters for the removal process were examined and determined using established adsorption models. Regeneration was tried for several cycles with a view to recover the adsorbed Cu(II) and Ni(II) ions from the loaded Na-MMT, A-MMT and Zr-MMT samples and also to restore spent modified-MMTs to their original states using batch desorption and regeneration studies. Application of the modified-MMTs in an industrial electro-plating wastewater was investigated in comparison with activated carbon. The results of the surface properties determination revealed that the point of zero charge (PZC) and the point of zero net proton charge (PZNPC) of MMT edges at different ionic strengths were at a pH of 3.4±0.2. A crossing point was observed for the proton adsorption versus pH curves at different ionic strengths of KCl electrolyte. The results on the assertion of the surface properties, showed that sorption of heavy metals (Cu(II) and Ni(II)) were of a diffusion process. Increase in Cu(II) and Ni(II) removal from aqueous medium was observed as from a pH of 3.4±2, confirming the PZC of MMT to be around a pH of 3.4. The uptake of Cu(II) and Ni(II) by Na-MMT, A-MMT and Zr-MMT strongly depend on initial heavy metal ion concentration, pH, MMT dosage, reaction time and temperature. The adsorption kinetics revealed sorption rate could be well fitted by the pseudo-second-order rate model. The data according to mass transfer and intraparticle diffusion models confirmed diffusion of solutes inside the clay particles as the rate-controlling step and more important for the adsorption rate than the external mass transfer. Adsorption isotherms showed that the uptake of Cu(II) and Ni(II) could be described by the Langmuir model and from calculations on thermodynamic parameters, the positive value of enthalpy change, nature. With increase in temperature of the system from 288 to 318 K, the ΔH˚, portray that the adsorption of Cu(II) and Ni(II) onto MMT is endothermic in nature. With increase in temperature of the system from 288 to 318 K, the adsorption capacity increased. The spontaneity and feasibility of the sorption process was confirmed by the decrease in ΔG˚ values as temperature increases, inferring that, adsorption will be more favourable at higher temperature and that MMT has a considerable potential for the removal of heavy metal cationic species from aqueous solution and wastewater. The effect of the modification processes on the textural and structural properties of MMT was studied. The modified-MMTs consist of microporus and mesoporous structures. The characterization by X-ray diffraction patterns revealed the basal spacing expansion of Na-MMT and contraction for Zr-MMT. MMT basal spacing contracted on acidification, with the emergence of an A-MMT that yields new peaks at 2θ ~ 7.7o and 26.8o which were not significant in the basic MMT. Differences in the interlayer spacings of the modified-MMTs may be attributed to the variations in the extent of dispersion of the clay in the different cases, the isomorphic substitutions in the tetrahedral and octahedral layers and the temperature treatment. The FT-IR spectra from the basic MMT, Na-MMT, A-MMT and Zr-MMT presented an absorption band at 3705 cm-1 corresponding to the stretching of hydroxyls groups and cations from the octahedral sheet. The bending vibrations of water molecule at 2891-3468 cm-1 are confirmed by the deformation band at 1701 cm-1 with an explanation of reduction in water content due to the exchange of H+, Na+ and Zr4+ ions for Na-MMT, A-MMT and Zr-MMT with the tetrahedral and octahedral cations during the treatment processes. Cation exchange capacity, Braunauer-Emmett-Teller (BET) surface area, pore volume and pore size increased for Na-MMT and decreased for A-MMT and Zr-MMT. The shapes of the N2 adsorption/desorption isotherm at 77 K for the basic-MMT and modified-MMTs look quite similar, nevertheless, adsorbed volume sequence presents Na-MMT > MMT > Zr-MMT > A-MMT. Thus a good correlation between the surface area and the pore volume was established. The efficacy of the modified-MMTs was investigated for adsorptive removal of Cu(II) and Ni(II) from aqueous solution. The adsorptive capabilities of the modified-MMTs were strongly influenced by pH, initial metal ion concentration and contact time. The Redlich-Peterson model best described the equilibrium sorption of Cu(II) and Ni(II) onto Na-MMT and the Dubinin-Radushkevich model was the best model in predicting the equilibrium sorption of Cu(II) and Ni(II) onto A-MMT. The Freundlich model gave the best fit to the experimental data of Cu(II) uptake by Zr-MMT while Langmuir model fitted best for Ni(II) adsorption by Zr-MMT. The kinetics of Cu(II) and Ni(II) uptake by the modified-MMTs followed the pseudo second-order chemisorption mechanism. Sorptions of Cu(II) and Ni(II) onto Na-MMT, A-MMT and Zr-MMT were spontaneous and endothermic. The spent adsorbents can be regenerated and reused upon treatment with 0.1 M HCl. Sorption yield observed for Cu(II) with Na-MMT, A-MMT, Zr-MMT and AC as adsorbents in the real wastewater application were eighty-five percent, fifty-nine percent, seventy-two percent and ninety-four percent, respectively. Ni(II) and Cr(VI) presence in the wastewater, were totally removed by all the three modified adsorbents. Na-MMT, A-MMT and Zr-MMT compared favorably well with activated carbon, and were found to be very efficient for the removal of heavy metal ions from aqueous bodies. Hence, suggested for practical applications as substitutes for activated carbon in the removal of toxic heavy metal ions from industrial effluents.;금속과의 결합능이 우수하면서 환경친화적인 흡착제를 찾기 위한 연구가 활발히 진행되고 있다. 중금속 함유 폐수 처리에 적용되고 있는 활성탄의 잠재적 대안 물질로 공급함으로써 산업 폐수의 처리 비용을 감소시키기 위하여 천연 물질, 농업 폐기물 또는 산업 부산물 같은 거대한 양의 물질들에 대한 연구가 수행되어오고 있다. 본 연구의 목적은 산업폐수에 함유되어 있는 독성 중금속을 제거하기 위해 사용되고 있는 활성탄을 효율적으로 대체할 수 있는 흡착제를 찾기 위하여 천연 점토 광물 자원으로부터 대용 흡착제를 개발하기 위한 것이다. 몬모릴로나이트는 천연 점토 광물로 결정화학적 특징에 기인하며 광물에 의한 중금속 보유력은 흡착과 양이온 교환 반응에 의해 일어날 수 있다. 따라서 수중 독성 중금속 제거를 위한 MMT적용은 MMT 표면 성질의 연구와 변형에 의해 연구 되고 있다. 산업폐수로부터 독성 중금속의 제거에 있어 MMT의 사용은 널리 연구되어 오고 있지만, 대부분의 연구는 고온 및 높은 산성 조건에서 변형되었을 때 MMT의 흡착 거동에 대해 알려져 있다. 기존 연구와 달리 본 연구에서는 MMT의 point of zero charge을 결정하기 위한 교차점을 찾고 나아가 독성 금속 함유 산업폐수로부터 중금속 제거를 위한 흡착제로서 MMT를 사용하기 위하여 MMT를 고온 및 산성 조건에서 표면을 변형시켜 흡착 효율을 살펴보고자 한다. Potentiometric 과 mass titration를 이용한 MMT의 물리화학적 표면 성질을 결정하고 조사하기 위해 Batch 실험 연구를 수행하였으며, modified-MMT의 표면 성질을 확인하기 위하여 수용액으로부터 Cu(II)와 Ni(II) 제거를 위한 흡착실험을 수행하였다. MMT의 흡착 가능성을 향상시키기 위하여 염화나트륨, 황산, 지르코늄 산염화물 용액을 이용하여 MMT의 표면을 변형시켰으며, 화학분석, XRD, BET, 적외선분광학을 이용하여 물질 특성을 자세히 조사하였다. 흡착제의 양, pH, 온도, 접촉시간 그리고 금속이온농도를 실험 변수로 설정하여 염화나트륨, 산, 지르코늄 산염화물에 의한 modified-MMT의 흡착 실험을 수행하였다. 흡착제거공정에 대한 메카니즘, 속도론 그리고 열역학적 변수를 살펴보았으며 등온흡착식에 적용하여 보았다. Na-MMT, A-MMT 그리고 Zr-MMT에 흡착된 Cu(II)와 Ni(II)를 회수하기 위하여 또한 Batch 탈착 및 재생 연구를 이용하여 사용한 modified-MMT을 복구하기 위하여 7회에 걸쳐 재생 실험을 수행하였다. Modified-MMT를 산업 전기도금 폐수 처리에 적용하여 보았으며 이를 활성탄을 이용했을 때의 결과와 비교하여 보았다. MMT의 point of zero charge (PZC) 와 point of zero net proton charge (PZNPC)는 pH 3.4±0.2인 것으로 파악되었으며, pH에 대한 H+흡착 그래프로부터 교차점은 KCl 전해질의 다른 이온 세기에서 관측되었다. 이러한 결과는 중금속(Cu(II)와 Ni(II))의 흡착은 diffusion process 라는 것을 의미한다. Cu(II)와 Ni(II)의 제거는 pH 3.4±2를 기점으로 증가하였으며 MMT의 PZC는 pH 3.4인 것으로 확인되었다. Na-MMT, A-MMT 그리고 Zr-MMT에 의한 Cu(II)와 Ni(II)의 제거는 중금속의 초기농도, pH, MMT의 양, 반응시간 그리고 온도에 크게 영향을 받는다. 본 흡착반응은 유사이차반응속도를 잘 따르는 것으로 나타났으며 mass transfer 과 intraparticle diffusion models에 의해 본 연구결과는 점토 입자에 용질이 확산되는 과정이 속도결정단계라는 것을 알 수 있다. MMT에 대한 Cu(II)와 Ni(II)의 흡착은 Langmuir model을 잘 따르는 것으로 나타났고, 열역학적으로 고찰해본 결과 △H˚은 양의 값을 가지는 것으로 나타났으며 이는 MMT에 대한 Cu(II)와 Ni(II)의 흡착은 흡열반응이라는 것을 의미한다. 288K에서 318K로 온도가 증가함에 따라 흡착능이 증가하는 것으로 나타났고, 온도가 증가함에 따라 ΔG˚ 값은 감소하는 것으로 나타났으며 이러한 결과는 흡착공정이 자발적이고 실행가능성이 있다는 것을 의미하며 흡착은 고온에서 더 우세할 판단된다. 또한 MMT는 수용액 및 폐수로부터 중금속 제거에 상당히 잠재가능성이 있다는 것을 의미한다. MMT, Na-MMT, A-MMT 그리고 Zr-MMT 의 FT-IR 스펙트럼에서 3705 cm-1에서 나타난 흡수밴드는 hydroxyls groups 과cations의 피크인 것으로 파악되었다. 2891-3468 cm-1에서 나타난 피크는 물분자에 의한 것이며 1701 cm-1에서 나타난 피크는 물 함량의 감소에 의한 것으로 이는 처리공정에 의해 사면체 및 팔면체 cations과 함께 Na-MMT, A-MMT 그리고 Zr-MMT에서 H+,Na+그리고 Zr4+이온의 교환에 의한 것으로 확인되었다. 양이온교환능력, BET 표면적, pore volume 및 pore size는 Na-MMT 의 경우는 증가하였고 A-MMT 와 Zr-MMT에 대해서는 감소하였다. 77K에서 질소 흡탈착등온의 형태는 MMT와 modified-MMT는 매우 비슷하게 보였으며, 흡착된 부피 순서는 Na-MMT > MMT > Zr-MMT > A-MMT이었다. 따라서 표면적과 pore volume는 좋은 관계를 가지는 것을 알 수 있다. Modified-MMT에 의한 Cu(II)와 Ni(II)의 흡착 제거 실험을 수행하였으며, Modified-MMT의 흡착능은 pH, 중금속의 초기농도 및 접촉시간에 크게 영향을 받는 것으로 나타났다. Na-MMT와 A-MMT에 대한 Cu(II)와 Ni(II)의 평형 흡착은 각각 Redlich-Peterson model과 Dubinin-Radushkevich model을 가장 잘 따르는 것으로 나타났다. 또한 Zr-MMT에 대한 Cu(II) 흡착에 대한 실험 결과는 Freundlich model을 가장 잘 따르고 Zr-MMT에 대한 Ni(II)의 흡착은 Langmuir model을 따르는 것으로 조사되었다. Modified-MMT에 대한 Cu(II)와 Ni(II)의 흡착은 유사 이차 화학흡착 메커니즘을 따르는 것으로 나타났으며 Na-MMT, A-MMT 그리고 Zr-MMT에 대한 Cu(II)와 Ni(II)의 흡착은 자발적이며 흡열반응이라는 것을 알 수 있었다. 사용한 흡착제는 0.1M HCl을 이용하여 처리한 후 재생 또는 재사용하였다. 실제 폐수에 적용해 본 결과 흡착제 Na-MMT, A-MMT, Zr-MMT 그리고 AC에 대한 Cu(II)의 흡착은 각각 85%, 59%, 72% 그리고 94%의 효율을 보였다. Ni(II)와 Cr(VI)가 존재하는 폐수에 Na-MMT, A-MMT 그리고 Zr-MMT 흡착제를 적용하여 본 결과, 이들 흡착제는 활성탄처럼 우세한 흡착률을 보였으며 이러한 결과로부터 Modified-MMT는 중금속 이온 제거에 매우 효과적이라는 것을 알 수 있었다. 따라서 Modified-MMT는 산업폐수로부터 독성 중금속의 제거에 있어 활성탄의 대체제로서 실제 적용 가능성이 있는 것으로 사료된다.-
dc.description.tableofcontentsChapter 1 Introduction = 1 1.1. Statement of problem = 2 1.2. Research objectives = 5 1.3. Research outline = 6 1.4. Organization of dissertation = 7 Chapter 2 Background and Literature Review = 9 2.1. Industrial wastewater = 10 2.1.1. Sources of industrial wastewater = 11 2.2. Heavy metals = 12 2.2.1. Heavy metals in the environment = 14 2.2.2. Toxic effect of copper and nickel ions = 16 2.3. Remediation techniques for treatment of toxic heavy metal ions = 19 2.3.1. Chemical precipitation = 20 2.3.2. Coagulation-flocculation = 22 2.3.3. Flotation = 23 2.3.4. Membrane filtration = 25 2.3.5. Electrodialysis = 28 2.3.6. Ion Exchange = 30 2.3.7. Adsorption = 32 2.3.8. Biological treatment techniques = 34 2.4. Materials for heavy metal ions removal = 36 2.4.1. Activated carbon from agricultural wastes = 36 2.4.2. Activated carbon from other materials(AC) = 39 2.4.3. By-products from industry = 39 2.4.4. Miscellaneous eco-friendly adsorbents = 40 2.4.5. Natural materials = 41 2.4.5.1. Zeolite = 42 2.4.5.2. Clay = 42 2.4.5.2.1. Clay chemistry = 45 2.4.5.3. Clay sorption of metal species = 49 2.5. Montmorillonite as heavy metal ions scavenger = 51 2.5.1. Modification of montmorillonite for improved heavy metal adsorption = 55 Chapter 3 Montmorillonite Surface Properties and Sorption Characteristics for Heavy Metal Removal from Aqueous Solutions = 58 3.1. Introduction-Montmorillonite as an adsorbent = 59 3.2. Materials and methods = 60 3.2.1. MMT clay = 60 3.2.2. Potentiometric titrations = 61 3.2.3. Mass titration = 62 3.2.4. Batch mode adsorption studies = 63 3.3. Result and discussion = 64 3.3.1. Acid-base potentiometric titration = 64 3.3.2. Mass titration = 68 3.3.3. Clay surface charge effect = 70 3.3.4. Adsorption Studies = 73 3.3.4.1. Kinetics = 79 3.3.4.2. Adsorption mechanism = 81 2.3.4.3. Sorption isotherm = 87 2.3.4.4. Thermodynamic parameters = 91 3.4. Summary = 94 Chapter 4 Modification of Montmorillonite (MMT) Surface Properties, Adsorption, Desorption and Regeneration Evaluation = 97 4.1. Introduction-Modification of montmorillonite = 98 4.2. Materials and methods = 102 4.2.1. Synthesis = 102 4.2.1.1. Sodium-exchanged MMT = 102 4.2.1.2. Acid activated MMT = 102 4.2.1.3. Pillared MMT = 103 4.2.2. MMT characterization = 103 4.2.3. Batch mode adsorption system = 104 4.2.4. Desorption and regeneration studies = 105 4.2.5. MMT application to real industrial wastewater = 106 4.3. Results and discussion = 107 4.3.1. MMT characterization = 107 4.3.2. Adsorption studies = 113 4.3.2.1. Effect of pH = 113 4.3.2.2. Effect of initial concentration and time = 121 4.3.2.3. Equilibrium isotherm models = 126 4.3.2.4. Adsorption kinetics = 139 4.3.2.5. Effect of temperature and thermodynamic parameters = 152 4.3.2.6. Desorption and regeneration = 160 4.3.2.7. Comparative application of modified montmorillonites in real industrial wastewater = 163 Chapter 5 Conclusions and Recommendations for Further Research = 166 5.1. Conclusions = 167 5.2. Recommendations for further research = 172 References = 174 Appendix of chapter 3 = 200 국문초록 = 201-
dc.formatapplication/pdf-
dc.format.extent1880219 bytes-
dc.languageeng-
dc.publisher이화여자대학교 대학원-
dc.titleTreatment of Heavy Metal-laden Industrial Wastewater using Modified-Montmorillonite-
dc.typeDoctoral Thesis-
dc.title.translatedModified-Montmorillonite를 이용한 중금속 함유 산업폐수의 처리에 관한 연구-
dc.creator.othernameIjagbemi Christianah Olakitan-
dc.format.pagexxiii, 207 p.-
dc.identifier.thesisdegreeDoctor-
dc.identifier.major대학원 환경공학과-
dc.date.awarded2010. 2-
Appears in Collections:
일반대학원 > 환경공학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

BROWSE