View : 74 Download: 0

Studies on Ru Catalyst Immobilization for Olefin Metathesis and Elucidation of Biosynthetic Mechanism of Macrocyclic Polyketide

Studies on Ru Catalyst Immobilization for Olefin Metathesis and Elucidation of Biosynthetic Mechanism of Macrocyclic Polyketide
Chen, Shuwei
Issue Date
대학원 화학·나노과학과
이화여자대학교 대학원
논문의 연구는 크게 4 가지의 다른 주제로 구성되어 있다: Part I 의 주제는 ring-closing metathesis 반응에 사용될 새로운 타입의 재사용이 가능한 self-supported 고분자 Ru-carbene 복합체에 관한 연구이고, Part II 는 ring-closing metathesis 와 cross metathesis 반응에 사용될 imidazolium ion-tagged Ru-carbene 복합체에 관한 내용이다. Part III 에서는 이온성 액체를 사용하여 latent Ru-복합체를 in situ activation 시킨 후 ring-closing metathesis 반응에 적용시킨 것에 관한 내용이며, 마지막 Part IV 의 주제는 macrocyclic polyketide 의 생합성 메커니즘에 관한 연구이다. Part I 는 release-return 메커니즘에 근거하여 ring-closing metathesis 반응 중에는 균일계 촉매로 작용하고 반응이 끝난 후에는 불균일계 회수가 가능한 두종류의 self-supported Grubbs/Hoveyda-타입 Ru-carbene 복합체를 디자인하고 합성하였다. 이러한 새로운 유형의 재사용 가능한 self-supported Ru-복합체를 조사하던 과정에서 binuclear Ru-복합체가 mononuclear Ru-복합체보다 반응성이 더 높다는 사실과 Hoveyda 의 1^(st) generation 타입 Ru-복합체의 반응성이 온도와 정비례하지 않는 다는 점을 알아냈다. Part II 는 isopropoxy 그룹에 imidazolium tag 를 연결한 새로운 Hoveyda-타입 Ru-복합체를 합성한 후, 이온성 액체내에서 ring-closing metathesis (RCM) 과 cross metathesis (CM) 반응의 반응성과 재 사용성을 조사한 결과 다양한 dienes의 RCM 반응에 뛰어난 촉매 반응성을 보였다. 그리고 이 촉매에 재 사용성은 imidazolium tags 의 tether 길이와 구조, 이온성 액체의 종류와 이온성 액체용매 시스템에 큰 영향을 받았다. Part III 는 촉매반응에 비활성인 Ru-carboxylate 복합체를 1 당량의 162 imidazolium halide 와 tetrabutyl ammonium halide 를 첨가하여 이온성 액체 내에서 효과적으로 in situ activation 시켰다. In suit activated 촉매의 반응성은 이온성 액체의 음이온, imidazolium halides 와 tetrabutylammonium halides 에 크게 영향을 받는다. 최적 조건에서 latent Ru 복합체는 다양한 dienes 의 ring-closing metathesis 반응에서 in situ activation 을 통하여 >99% 이상의 conversion 수율을 보였다. Part IV 는 macrocyclic polyketide 에 대해 소개하고 allylmalonyl extender 단위 생합성을 위한 경로에 관한 연구이다. Macrocyclic polyketide 의 생합성 메커니즘을 설명하기 위해, 유전자 deletion, 화학적 complementation 실험을 수행하였고, 이러한 모든 데이터는 이 논문에서 제시한 경로를 잘 지지하고 있다.;Four different parts are comprised in this thesis: Part I is self-supported, polymeric Ru-carbene complexes for ring-closing metathesis; Part II is imidazolium ion-tagged Ru-carbene complexes for ring-closing metathesis and cross metathesis; Part III is mainly about in situ activation of a latent Ru-carbene complex in ionic liquid and its application in ring-closing metathesis; Part IV is the elucidation of biosynthetic mechanism of macrocyclic polyketide. In the first part, on the basis of the release-return metathesis mechanism, two different types of self-supported Grubbs/Hoveyda-type Ru-carbene complexes have been designed and synthesized, which catalyzed the ring-closing metathesis homogeneously, but recovered heterogeneously. It has been found that the binuclear Ru-complexes exhibited slightly higher catalytic activity than the corresponding mononuclear Ru-complexes, and the unusual inverse temperature dependency of the Hoveyda’s 1^(st) generation-type Ru-complexes. In the second part, novel Hoveyda-type Ru-carbene complexes tethering imidazolium tags at chelating isopropoxy group have been synthesized and investigated their catalytic activities and recyclabilities in ring-closing metathesis (RCM) and cross metathesis (CM) in ionic liquids. They showed excellent catalytic activities for RCM of various dienes. The recyclabilities of these catalysts are largely dependent on tether length, structures of imidazolium tags, ionic liquids, and the composition of the ionic liquid solvent systems. In the third part, catalytically inactive, latent Ru-carboxylate complex, which was recently serendipitously isolated, can be activated in situ efficiently in ionic liquids (ILs) with the aid of imidazolium halides or tetrabutylammonium halides. The activity of the in situ activated catalyst was largely dependent on ionic liquid anions, imidazolium halides, and tetrabutylammonium halides. Under the optimal condition, the latent Ru complex was activated in situ to catalyze the ring-closing metathesis of various dienes with conversions of up to 99%. In the fourth part, it has been introduced macrocyclic polyketide and proposed the pathway for allylmalonyl extender unit biosynthesis. To elucidate the biosynthetic mechanism of FK506, a variety of carboxylic acids and their derivatives of N-acetylcysteamine, thiophenol and CoA, which have been utilized for the gene deletion, chemical complementation experiment to elucidate the biosynthetic pathway for allylmalonyl extender unit.
Show the fulltext
Appears in Collections:
일반대학원 > 화학·나노과학과 > Theses_Ph.D
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.